Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Enzymol ; 675: 207-233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36220271

RESUMO

Transcription is the first and most highly regulated step in gene expression. Experimental techniques for monitoring transcription are, thus, important for studying gene expression and gene regulation as well as for translational research and drug development. Fluorescence methods are often superior to other techniques for real-time monitoring of biochemical processes. Green fluorescent proteins have long served as valuable tools for studying the process of translation. Here we present two methods that utilize fluorescent light-up RNA aptamers (FLAPs), the RNA mimics of green fluorescent proteins, to monitoring transcription and co-transcriptional RNA folding. FLAPs adopt defined three-dimensional folds that bind low molecular weight compounds called fluorogens with concomitant increase in fluorescence by many folds. FLAPs provide a strong fluorescence signal with low background that allows monitoring of transcription in real time in vitro and in vivo. However, it takes several seconds for RNA polymerase to synthesize FLAPs and the subsequent folding of the fluorogen-binding platform takes additional seconds or minutes. Here we show that Broccoli-FLAP is well suited for monitoring the rate of transcription initiation in a multi-round setup that mitigates the slow rate of the FLAP maturation. Furthermore, we demonstrate that a relatively slow and inefficient folding of iSpinach-FLAP can be taken advantage of for monitoring the action of RNA folding chaperones.


Assuntos
Aptâmeros de Nucleotídeos , Aptâmeros de Nucleotídeos/química , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/genética , RNA , Dobramento de RNA
2.
Eur J Med Chem ; 237: 114342, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35439612

RESUMO

Showdomycin produced by Streptomyces showdoensis ATCC 15227 is a C-nucleoside microbial natural product with antimicrobial and cytotoxic properties. The unique feature of showdomycin in comparison to other nucleosides is its maleimide base moiety, which has the distinct ability to alkylate nucleophilic thiol groups by a Michael addition reaction. In order to understand structure-activity relationships of showdomycin, we synthesized a series of derivatives with modifications in the maleimide ring at the site of alkylation to moderate its reactivity. The showdomycin congeners were designed to retain the planarity of the base ring system to allow Watson-Crick base pairing and preserve the nucleosidic character of the compounds. Consequently, we synthesized triphosphates of showdomycin derivatives and tested their activity against RNA polymerases. Bromo, methylthio, and ethylthio derivatives of showdomycin were incorporated into RNA by bacterial and mitochondrial RNA polymerases and somewhat less efficiently by the eukaryotic RNA polymerase II. Showdomycin derivatives acted as uridine mimics and delayed further extension of the RNA chain by multi-subunit, but not mitochondrial RNA polymerases. Bioactivity profiling indicated that the mechanism of action of ethylthioshowdomycin was altered, with approximately 4-fold reduction in both cytotoxicity against human embryonic kidney cells and antibacterial activity against Escherichia coli. In addition, the ethylthio derivative was not inactivated by medium components or influenced by addition of uridine in contrast to showdomycin. The results explain how both the maleimide ring and the nucleoside nature contribute to the bioactivity of showdomycin and demonstrates for the first time that the two activities can be separated.


Assuntos
Nucleosídeos , Showdomicina , Antibacterianos/farmacologia , Humanos , Maleimidas/farmacologia , RNA , Showdomicina/farmacologia , Relação Estrutura-Atividade , Uridina
3.
Nat Commun ; 12(1): 796, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542236

RESUMO

RNA polymerases (RNAPs) synthesize RNA from NTPs, whereas DNA polymerases synthesize DNA from 2'dNTPs. DNA polymerases select against NTPs by using steric gates to exclude the 2'OH, but RNAPs have to employ alternative selection strategies. In single-subunit RNAPs, a conserved Tyr residue discriminates against 2'dNTPs, whereas selectivity mechanisms of multi-subunit RNAPs remain hitherto unknown. Here, we show that a conserved Arg residue uses a two-pronged strategy to select against 2'dNTPs in multi-subunit RNAPs. The conserved Arg interacts with the 2'OH group to promote NTP binding, but selectively inhibits incorporation of 2'dNTPs by interacting with their 3'OH group to favor the catalytically-inert 2'-endo conformation of the deoxyribose moiety. This deformative action is an elegant example of an active selection against a substrate that is a substructure of the correct substrate. Our findings provide important insights into the evolutionary origins of biopolymers and the design of selective inhibitors of viral RNAPs.


Assuntos
Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Desoxirribonucleotídeos/metabolismo , Desoxirribose/metabolismo , Arginina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/ultraestrutura , Cristalografia por Raios X , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/isolamento & purificação , RNA Polimerases Dirigidas por DNA/ultraestrutura , Escherichia coli/enzimologia , Escherichia coli/genética , Cinética , Simulação de Acoplamento Molecular , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Especificidade por Substrato , Thermus thermophilus/enzimologia , Thermus thermophilus/genética
4.
Nucleic Acids Res ; 47(19): 10296-10312, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31495891

RESUMO

Oxazinomycin is a C-nucleoside antibiotic that is produced by Streptomyces hygroscopicus and closely resembles uridine. Here, we show that the oxazinomycin triphosphate is a good substrate for bacterial and eukaryotic RNA polymerases (RNAPs) and that a single incorporated oxazinomycin is rapidly extended by the next nucleotide. However, the incorporation of several successive oxazinomycins or a single oxazinomycin in a certain sequence context arrested a fraction of the transcribing RNAP. The addition of Gre RNA cleavage factors eliminated the transcriptional arrest at a single oxazinomycin and shortened the nascent RNAs arrested at the polythymidine sequences suggesting that the transcriptional arrest was caused by backtracking of RNAP along the DNA template. We further demonstrate that the ubiquitous C-nucleoside pseudouridine is also a good substrate for RNA polymerases in a triphosphorylated form but does not inhibit transcription of the polythymidine sequences. Our results collectively suggest that oxazinomycin functions as a Trojan horse substrate and its inhibitory effect is attributable to the oxygen atom in the position corresponding to carbon five of the uracil ring.


Assuntos
RNA Polimerases Dirigidas por DNA/química , RNA/química , Transcrição Gênica/efeitos dos fármacos , Uridina/análogos & derivados , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Oxigênio/química , Pseudomonas/química , RNA/genética , Clivagem do RNA/efeitos dos fármacos , Streptomyces/química , Especificidade por Substrato , Timidina/química , Timidina/genética , Transcrição Gênica/genética , Fatores de Elongação da Transcrição/genética , Uracila/química , Uridina/síntese química , Uridina/química , Uridina/farmacologia
5.
Nucleic Acids Res ; 46(20): 10870-10887, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30256972

RESUMO

All cellular RNA polymerases (RNAP) occasionally backtrack along the template DNA as part of transcriptional proofreading and regulation. Here, we studied the mechanism of RNAP backtracking by one nucleotide using two complementary approaches that allowed us to precisely measure the occupancy and lifetime of the backtracked state. Our data show that the stability of the backtracked state is critically dependent on the closure of the RNAP active site by a mobile domain, the trigger loop (TL). The lifetime and occupancy of the backtracked state measurably decreased by substitutions of the TL residues that interact with the nucleoside triphosphate (NTP) substrate, whereas amino acid substitutions that stabilized the closed active site increased the lifetime and occupancy. These results suggest that the same conformer of the TL closes the active site during catalysis of nucleotide incorporation into the nascent RNA and backtracking by one nucleotide. In support of this hypothesis, we construct a model of the 1-nt backtracked complex with the closed active site and the backtracked nucleotide in the entry pore area known as the E-site. We further propose that 1-nt backtracking mimics the reversal of the NTP substrate loading into the RNAP active site during on-pathway elongation.


Assuntos
Domínio Catalítico , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Dobramento de Proteína , RNA/metabolismo , Elongação da Transcrição Genética , Catálise , Domínio Catalítico/genética , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Ligação Proteica , Estabilidade Proteica , RNA/química
6.
ACS Chem Biol ; 12(6): 1472-1477, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28418235

RESUMO

Nucleoside antibiotics are a large class of pharmaceutically relevant chemical entities, which exhibit a broad spectrum of biological activities. Most nucleosides belong to the canonical N-nucleoside family, where the heterocyclic unit is connected to the carbohydrate through a carbon-nitrogen bond. However, atypical C-nucleosides were isolated from Streptomyces bacteria over 50 years ago, but the molecular basis for formation of these metabolites has been unknown. Here, we have sequenced the genome of S. showdoensis ATCC 15227 and identified the gene cluster responsible for showdomycin production. Key to the detection was the presence of sdmA, encoding an enzyme of the pseudouridine monophosphate glycosidase family, which could catalyze formation of the C-glycosidic bond. Sequence analysis revealed an unusual combination of biosynthetic genes, while inactivation and subsequent complementation of sdmA confirmed the involvement of the locus in showdomycin formation. The study provides the first steps toward generation of novel C-nucleosides by pathway engineering.


Assuntos
Antibióticos Antineoplásicos/biossíntese , Família Multigênica , Showdomicina/biossíntese , Streptomyces/genética , Proteínas de Bactérias/genética , Biocatálise , Vias Biossintéticas , Genoma Bacteriano/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/fisiologia , Nucleosídeos , Análise de Sequência de DNA , Streptomyces/enzimologia
7.
J Biol Chem ; 280(7): 5960-71, 2005 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-15572376

RESUMO

The human constitutive androstane receptor (CAR, NR1I3) is an important ligand-activated regulator of oxidative and conjugative enzymes and transport proteins. Because of the lack of a crystal structure of the ligand-binding domain (LBD), wide species differences in ligand specificity and the scarcity of well characterized ligands, the factors that determine CAR ligand specificity are not clear. To address this issue, we developed highly defined homology models of human CAR LBD to identify residues lining the ligand-binding pocket and to perform molecular dynamics simulations with known human CAR modulators. The roles of 22 LBD residues for basal activity, ligand selectivity, and interactions with co-regulators were studied using site-directed mutagenesis, mammalian co-transfection, and yeast two-hybrid assays. These studies identified several amino acids within helices 3 (Asn(165)), 5 (Val(199)), 11 (Tyr(326), Ile(330), and Gln(331)), and 12 (Leu(343) and Ile(346)) that contribute to the high basal activity of human CAR. Unique residues within helices 3 (Ile(164) and Asn(165)), 5 (Cys(202) and His(203)), and 7 (Phe(234) and Phe(238)) were found control the selectivity for CAR activators and inhibitors. A single residue in helix 7 (Phe(243)) appears to explain the human/mouse species difference in response of CAR to 17alpha-ethynyl-3,17beta-estradiol.


Assuntos
Aminoácidos/metabolismo , Androstanos/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Aminoácidos/genética , Animais , Linhagem Celular , Receptor Constitutivo de Androstano , Humanos , Ligantes , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Ligação Proteica , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/genética , Alinhamento de Sequência , Especificidade da Espécie , Especificidade por Substrato , Fatores de Transcrição/genética
8.
J Med Chem ; 46(22): 4687-95, 2003 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-14561088

RESUMO

The constitutive androstane receptor (CAR) regulates drug and steroid metabolism through binding to cytochrome P450 2B, 2C, and 3A gene enhancers. Uniquely among nuclear receptors, mouse CAR (mCAR) can be suppressed by androstenol and activated by structurally diverse drugs, pesticides, and environmental pollutants. To gain insight into presently ill-defined structural requirements of mCAR ligands, we employed a mCAR inhibition assay in mammalian HEK293 cells to create a QSAR model that could well predict the inhibition by three unknown steroids. Two novel mCAR inhibitors were thus identified. Yeast two-hybrid assays indicated that steroids inhibit mCAR primarily by promoting association of mCAR with the corepressor NCoR, with only minor contribution from other mechanisms. Analysis of chimeric and mutant mCAR constructs suggested that androstenol sensitivity is controlled by residues between amino acids 201-263 (helices 5-7) and it does not depend on the residue 350 within helix 12, as previously suggested.


Assuntos
Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Esteroides/química , Fatores de Transcrição/antagonistas & inibidores , Animais , Linhagem Celular , Receptor Constitutivo de Androstano , Histona Acetiltransferases , Humanos , Camundongos , Modelos Moleculares , Mutação , Proteínas Nucleares/química , Correpressor 1 de Receptor Nuclear , Coativador 1 de Receptor Nuclear , Estrutura Secundária de Proteína , Relação Quantitativa Estrutura-Atividade , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Repressoras/química , Esteroides/farmacologia , Fatores de Transcrição/química , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido , Leveduras/efeitos dos fármacos , Leveduras/metabolismo
9.
Biochem J ; 376(Pt 2): 465-72, 2003 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-12948398

RESUMO

mCAR (mouse constitutive androstane receptor; NR1I3) controls the expression of cytochrome P450 as well as other enzymes involved in drug and steroid metabolism. The high basal activity of mCAR can be modulated by inhibitory steroids related to androstenol and by activating xenobiotic chemicals such as 1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene and chlorpromazine. The ability of oestrogens and some other xenobiotics to activate mCAR is not clear. In the present study, co-transfection assays in HEK-293 cells indicated that oestrogens varied in their efficacy to activate mCAR, depending on variation at the steroid D-ring and position of hydroxy groups. In general, oestrogens were weaker activators of mCAR than 1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene and chlorpromazine. Also, the induction of CYP2B10 mRNA by oestrogens was less pronounced in mouse primary hepatocytes. Yeast two-hybrid assays indicated that, unlike androstenol and the established activators, oestrogens attracted both nuclear receptor co-repressors and co-activators to the mCAR ligand-binding domain, thus limiting the extent of mCAR activation. This novel dual action is not limited to oestrogens, but is shared by some xenobiotic CYP2B inducers such as clotrimazole and methoxychlor. These findings offer an alternative explanation for the recently suggested nuclear activation step of mCAR.


Assuntos
Estrogênios/farmacologia , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Fatores de Transcrição/agonistas , Fatores de Transcrição/antagonistas & inibidores , Animais , Hidrocarboneto de Aril Hidroxilases/genética , Hidrocarboneto de Aril Hidroxilases/metabolismo , Sítios de Ligação , Linhagem Celular , Receptor Constitutivo de Androstano , Família 2 do Citocromo P450 , Receptor alfa de Estrogênio , Estrogênios/química , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Humanos , Ligantes , Camundongos , RNA Mensageiro/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Estrogênio/química , Receptores de Estrogênio/metabolismo , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo , Xenobióticos/farmacologia
10.
Mol Pharmacol ; 62(2): 366-78, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12130690

RESUMO

The constitutive androstane receptor (CAR) regulates mouse and human CYP2B genes through binding to the direct repeat-4 (DR4) motifs present in the phenobarbital-responsive enhancer module (PBREM). The preference of PBREM elements for nuclear receptors and the extent of cross-talk between CAR and other nuclear receptors are currently unknown. Our transient transfection and DNA binding experiments indicate that binding to DR4 motifs does not correlate with the activation response and that mouse and human PBREM are efficiently 'insulated' from the effects of other nuclear receptors despite their substantial affinity for DR4 motifs. Certain nuclear receptors that do not bind to DR4 motifs, such as peroxisome proliferator-activated receptor-alpha and farnesoid X receptor, can suppress PBREM function via a coactivator-dependent process that may have relevance in vivo. In competition experiments, mouse PBREM is clearly more selective for CAR than human PBREM. Pregnane X, vitamin D, and thyroid hormone receptors can potentially compete with human CAR on human PBREM. In contrast to the selective nature of PBREM, CYP3A enhancers are highly and comparably responsive to CAR, pregnane X receptor, and vitamin D receptor. In addition, the ligand specificities of human and mouse CAR were defined by mammalian cotransfection and yeast two-hybrid techniques. Our results provide new mechanistic explanations to several previously unresolved aspects of CYP2B and CYP3A gene regulation.


Assuntos
Hidrocarboneto de Aril Hidroxilases , Elementos Facilitadores Genéticos/efeitos dos fármacos , Fenobarbital/farmacologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Receptor Constitutivo de Androstano , Citocromo P-450 CYP2B6 , Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450/genética , DNA/efeitos dos fármacos , DNA/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Oxirredutases N-Desmetilantes/genética , Estrutura Terciária de Proteína , Receptor Cross-Talk , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...