Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5427, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696798

RESUMO

Hadal trenches are unique geological and ecological systems located along subduction zones. Earthquake-triggered turbidites act as efficient transport pathways of organic carbon (OC), yet remineralization and transformation of OC in these systems are not comprehensively understood. Here we measure concentrations and stable- and radiocarbon isotope signatures of dissolved organic and inorganic carbon (DOC, DIC) in the subsurface sediment interstitial water along the Japan Trench axis collected during the IODP Expedition 386. We find accumulation and aging of DOC and DIC in the subsurface sediments, which we interpret as enhanced production of labile dissolved carbon owing to earthquake-triggered turbidites, which supports intensive microbial methanogenesis in the trench sediments. The residual dissolved carbon accumulates in deep subsurface sediments and may continue to fuel the deep biosphere. Tectonic events can therefore enhance carbon accumulation and stimulate carbon transformation in plate convergent trench systems, which may accelerate carbon export into the subduction zones.

2.
Ambio ; 51(2): 370-382, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34628602

RESUMO

Unprecedented and dramatic transformations are occurring in the Arctic in response to climate change, but academic, public, and political discourse has disproportionately focussed on the most visible and direct aspects of change, including sea ice melt, permafrost thaw, the fate of charismatic megafauna, and the expansion of fisheries. Such narratives disregard the importance of less visible and indirect processes and, in particular, miss the substantive contribution of the shelf seafloor in regulating nutrients and sequestering carbon. Here, we summarise the biogeochemical functioning of the Arctic shelf seafloor before considering how climate change and regional adjustments to human activities may alter its biogeochemical and ecological dynamics, including ecosystem function, carbon burial, or nutrient recycling. We highlight the importance of the Arctic benthic system in mitigating climatic and anthropogenic change and, with a focus on the Barents Sea, offer some observations and our perspectives on future management and policy.


Assuntos
Ecossistema , Sedimentos Geológicos , Regiões Árticas , Mudança Climática , Camada de Gelo
3.
Ambio ; 51(2): 355-369, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34914030

RESUMO

Climate change is altering nutrient cycling within the Arctic Ocean, having knock-on effects to Arctic ecosystems. Primary production in the Arctic is principally nitrogen-limited, particularly in the western Pacific-dominated regions where denitrification exacerbates nitrogen loss. The nutrient status of the eastern Eurasian Arctic remains under debate. In the Barents Sea, primary production has increased by 88% since 1998. To support this rapid increase in productivity, either the standing stock of nutrients has been depleted, or the external nutrient supply has increased. Atlantic water inflow, enhanced mixing, benthic nitrogen cycling, and land-ocean interaction have the potential to alter the nutrient supply through addition, dilution or removal. Here we use new datasets from the Changing Arctic Ocean program alongside historical datasets to assess how nitrate and phosphate concentrations may be changing in response to these processes. We highlight how nutrient dynamics may continue to change, why this is important for regional and international policy-making and suggest relevant research priorities for the future.


Assuntos
Mudança Climática , Ecossistema , Regiões Árticas , Nutrientes , Oceanos e Mares
4.
Nat Commun ; 12(1): 275, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436568

RESUMO

Burial of organic material in marine sediments represents a dominant natural mechanism of long-term carbon sequestration globally, but critical aspects of this carbon sink remain unresolved. Investigation of surface sediments led to the proposition that on average 10-20% of sedimentary organic carbon is stabilised and physically protected against microbial degradation through binding to reactive metal (e.g. iron and manganese) oxides. Here we examine the long-term efficiency of this rusty carbon sink by analysing the chemical composition of sediments and pore waters from four locations in the Barents Sea. Our findings show that the carbon-iron coupling persists below the uppermost, oxygenated sediment layer over thousands of years. We further propose that authigenic coprecipitation is not the dominant factor of the carbon-iron bounding in these Arctic shelf sediments and that a substantial fraction of the organic carbon is already bound to reactive iron prior deposition on the seafloor.

5.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20190359, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32862804

RESUMO

The Barents Sea is experiencing long-term climate-driven changes, e.g. modification in oceanographic conditions and extensive sea ice loss, which can lead to large, yet unquantified disruptions to ecosystem functioning. This key region hosts a large fraction of Arctic primary productivity. However, processes governing benthic and pelagic coupling are not mechanistically understood, limiting our ability to predict the impacts of future perturbations. We combine field observations with a reaction-transport model approach to quantify organic matter (OM) processing and disentangle its drivers. Sedimentary OM reactivity patterns show no gradients relative to sea ice extent, being mostly driven by seafloor spatial heterogeneity. Burial of high reactivity, marine-derived OM is evident at sites influenced by Atlantic Water (AW), whereas low reactivity material is linked to terrestrial inputs on the central shelf. Degradation rates are mainly driven by aerobic respiration (40-75%), being greater at sites where highly reactive material is buried. Similarly, ammonium and phosphate fluxes are greater at those sites. The present-day AW-dominated shelf might represent the future scenario for the entire Barents Sea. Our results represent a baseline systematic understanding of seafloor geochemistry, allowing us to anticipate changes that could be imposed on the pan-Arctic in the future if climate-driven perturbations persist. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Assuntos
Mudança Climática , Ecossistema , Organismos Aquáticos/metabolismo , Regiões Árticas , Simulação por Computador , Sedimentos Geológicos/química , Camada de Gelo , Modelos Biológicos , Compostos Orgânicos/metabolismo , Água do Mar/química
6.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20190358, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32862806

RESUMO

The Arctic Ocean region is currently undergoing dramatic changes, which will likely alter the nutrient cycles that underpin Arctic marine ecosystems. Phosphate is a key limiting nutrient for marine life but gaps in our understanding of the Arctic phosphorus (P) cycle persist. In this study, we investigate the benthic burial and recycling of phosphorus using sediments and pore waters from the Eurasian Arctic margin, including the Barents Sea slope and the Yermak Plateau. Our results highlight that P is generally lost from sediments with depth during organic matter respiration. On the Yermak Plateau, remobilization of P results in a diffusive flux of P to the seafloor of between 96 and 261 µmol m-2 yr-1. On the Barents Sea slope, diffusive fluxes of P are much larger (1736-2449 µmol m-2 yr-1), but these fluxes are into near-surface sediments rather than to the bottom waters. The difference in cycling on the Barents Sea slope is controlled by higher fluxes of fresh organic matter and active iron cycling. As changes in primary productivity, ocean circulation and glacial melt continue, benthic P cycling is likely to be altered with implications for P imported into the Arctic Ocean Basin. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Assuntos
Camada de Gelo/química , Fósforo/análise , Regiões Árticas , Difusão , Ecossistema , Sedimentos Geológicos/química , Aquecimento Global , Ferro/análise , Noruega , Compostos Orgânicos/análise , Estações do Ano , Água do Mar/química
7.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20190364, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32862811

RESUMO

Over the last few decades, the Barents Sea experienced substantial warming, an expansion of relatively warm Atlantic water and a reduction in sea ice cover. This environmental change forces the entire Barents Sea ecosystem to adapt and restructure and therefore changes in pelagic-benthic coupling, organic matter sedimentation and long-term carbon sequestration are expected. Here we combine new and existing organic and inorganic geochemical surface sediment data from the western Barents Sea and show a clear link between the modern ecosystem structure, sea ice cover and the organic carbon and CaCO3 contents in Barents Sea surface sediments. Furthermore, we discuss the sources of total and reactive iron phases and evaluate the spatial distribution of organic carbon bound to reactive iron. Consistent with a recent global estimate we find that on average 21.0 ± 8.3 per cent of the total organic carbon is associated to reactive iron (fOC-FeR) in Barents Sea surface sediments. The spatial distribution of fOC-FeR, however, seems to be unrelated to sea ice cover, Atlantic water inflow or proximity to land. Future Arctic warming might, therefore, neither increase nor decrease the burial rates of iron-associated organic carbon. However, our results also imply that ongoing sea ice reduction and the associated alteration of vertical carbon fluxes might cause accompanied shifts in the Barents Sea surface sedimentary organic carbon content, which might result in overall reduced carbon sequestration in the future. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Assuntos
Sedimentos Geológicos/química , Camada de Gelo/química , Regiões Árticas , Carbonato de Cálcio/análise , Carbono/análise , Ciclo do Carbono , Ecossistema , Aquecimento Global , Ferro/análise , Noruega , Oceanos e Mares , Compostos Orgânicos/análise
8.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20200223, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32862813

RESUMO

Process-based, mechanistic investigations of organic matter transformation and diagenesis directly beneath the sediment-water interface (SWI) in Arctic continental shelves are vital as these regions are at greatest risk of future change. This is in part due to disruptions in benthic-pelagic coupling associated with ocean current change and sea ice retreat. Here, we focus on a high-resolution, multi-disciplinary set of measurements that illustrate how microbial processes involved in the degradation of organic matter are directly coupled with inorganic and organic geochemical sediment properties (measured and modelled) as well as the extent/depth of bioturbation. We find direct links between aerobic processes, reactive organic carbon and highest abundances of bacteria and archaea in the uppermost layer (0-4.5 cm depth) followed by dominance of microbes involved in nitrate/nitrite and iron/manganese reduction across the oxic-anoxic redox boundary (approx. 4.5-10.5 cm depth). Sulfate reducers dominate in the deeper (approx. 10.5-33 cm) anoxic sediments which is consistent with the modelled reactive transport framework. Importantly, organic matter reactivity as tracked by organic geochemical parameters (n-alkanes, n-alkanoic acids, n-alkanols and sterols) changes most dramatically at and directly below the SWI together with sedimentology and biological activity but remained relatively unchanged across deeper changes in sedimentology. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Assuntos
Ecossistema , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Compostos Orgânicos/análise , Água do Mar/química , Água do Mar/microbiologia , Regiões Árticas , Biotransformação , Ciclo do Carbono , Mudança Climática , Bases de Dados Factuais , Fenômenos Microbiológicos , Noruega , Oceanos e Mares , Oxirredução
10.
Isotopes Environ Health Stud ; 56(1): 51-68, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31865768

RESUMO

Comparing two different techniques applied for the extraction of marine pore water samples from sediments, the well-established whole round (WR) method and the more recent Rhizon method, in terms of their effects on stable calcium isotope ratios in extracted pore waters, we recognize a systematic offset between the two sampling methods. Higher δ44/40Ca values are associated with lower Ca concentrations for the Rhizon sampling technique and lower δ44/40Ca values are associated with higher Ca concentrations for the corresponding WR-derived pore water samples. Models involving Rayleigh fractionation and mixing calculation suggest that the observed offset is most likely caused by a combined process of CaCO3 precipitation and ion exchange taking place during Rhizon sampling-induced CO2 degassing. Changing pressure, extraction time or extraction yield during WR pressing does not lead to a variation in δ44/40Ca, indicating that no Ca isotope fractionation takes place during the sampling of pore water. On the basis of analytical and modelling results, WR samples appear to provide δ44/40Ca values that are more representative of the 'true' pore water isotopic composition. While the difference between the sampling techniques is close to the present-day analytical precision of Ca isotope analysis, it may become more relevant with increasing analytical precision in the future.


Assuntos
Isótopos de Cálcio/análise , Cálcio/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Água do Mar/química , Dióxido de Carbono/análise , Fracionamento Químico , Modelos Teóricos
11.
Proc Natl Acad Sci U S A ; 112(49): 15042-7, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26598689

RESUMO

Erosion, sediment production, and routing on a tectonically active continental margin reflect both tectonic and climatic processes; partitioning the relative importance of these processes remains controversial. Gulf of Alaska contains a preserved sedimentary record of the Yakutat Terrane collision with North America. Because tectonic convergence in the coastal St. Elias orogen has been roughly constant for 6 My, variations in its eroded sediments preserved in the offshore Surveyor Fan constrain a budget of tectonic material influx, erosion, and sediment output. Seismically imaged sediment volumes calibrated with chronologies derived from Integrated Ocean Drilling Program boreholes show that erosion accelerated in response to Northern Hemisphere glacial intensification (∼ 2.7 Ma) and that the 900-km-long Surveyor Channel inception appears to correlate with this event. However, tectonic influx exceeded integrated sediment efflux over the interval 2.8-1.2 Ma. Volumetric erosion accelerated following the onset of quasi-periodic (∼ 100-ky) glacial cycles in the mid-Pleistocene climate transition (1.2-0.7 Ma). Since then, erosion and transport of material out of the orogen has outpaced tectonic influx by 50-80%. Such a rapid net mass loss explains apparent increases in exhumation rates inferred onshore from exposure dates and mapped out-of-sequence fault patterns. The 1.2-My mass budget imbalance must relax back toward equilibrium in balance with tectonic influx over the timescale of orogenic wedge response (millions of years). The St. Elias Range provides a key example of how active orogenic systems respond to transient mass fluxes, and of the possible influence of climate-driven erosive processes that diverge from equilibrium on the million-year scale.

12.
Nat Commun ; 6: 7628, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26194625

RESUMO

Minerals stabilize organic carbon (OC) in sediments, thereby directly affecting global climate at multiple scales, but how they do it is far from understood. Here we show that manganese oxide (Mn oxide) in a water treatment works filter bed traps dissolved OC as coatings build up in layers around clean sand grains at 3%w/wC. Using spectroscopic and thermogravimetric methods, we identify two main OC fractions. One is thermally refractory (>550 °C) and the other is thermally more labile (<550 °C). We postulate that the thermal stability of the trapped OC is due to carboxylate groups within it bonding to Mn oxide surfaces coupled with physical entrapment within the layers. We identify a significant difference in the nature of the surface-bound OC and bulk OC . We speculate that polymerization reactions may be occurring at depth within the layers. We also propose that these processes must be considered in future studies of OC in natural systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...