Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultramicroscopy ; 235: 113494, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35228144

RESUMO

In situ TEM utilizing windowed gas cells is a promising technique for studying catalytic processes, wherein temperature is one of the most important parameters to be controlled. Current gas cells are only capable of temperature measurement on a global (mm) scale, although the local temperature at the spot of observation (µm to nm scale) may significantly differ. Thus, local temperature fluctuations caused by gas flow and heat dissipation dynamics remain undetected when solely relying on the global device feedback. In this study, we overcome this limitation by measuring the specimen temperature in situ utilizing parallel-beam electron diffraction at gold nanoparticles. By combining this technique with an advanced data processing algorithm, we achieve sub-Kelvin precision in both, vacuum as well as gaseous environments. Mitigating charging effects is furthermore shown to minimize systematic errors. By utilizing this method, we characterize the local thermal stability of a state-of-the-art gas cell equipped with heating capability in vacuum and under various gas-flow conditions. Our findings provide crucial reference for in situ investigations into catalysis.

2.
Nanoscale Adv ; 3(9): 2466-2474, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-36134158

RESUMO

A significant electron-beam induced heating effect is demonstrated for liquid-phase transmission electron microscopy at low electron flux densities using Au nanoparticles as local nanothermometers. The obtained results are in agreement with theoretical considerations. Furthermore, the impact of beam-induced heating on radiolysis chemistry is estimated and the consequences of the effect are discussed.

3.
J Vis Exp ; (149)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31355798

RESUMO

The fabrication and preparation of graphene-supported microwell liquid cells (GSMLCs) for in situ electron microscopy is presented in a stepwise protocol. The versatility of the GSMLCs is demonstrated in the context of a study about etching and growth dynamics of gold nanostructures from a HAuCl4 precursor solution. GSMLCs combine the advantages of conventional silicon- and graphene-based liquid cells by offering reproducible well depths together with facile cell manufacturing and handling of the specimen under investigation. The GSMLCs are fabricated on a single silicon substrate which drastically reduces the complexity of the manufacturing process compared to two-wafer-based liquid cell designs. Here, no bonding or alignment process steps are required. Furthermore, the enclosed liquid volume can be tailored to the respective experimental requirements by simply adjusting the thickness of a silicon nitride layer. This enables a significant reduction of window bulging in the electron microscope vacuum. Finally, a state-of-the-art quantitative evaluation of single particle tracking and dendrite formation in liquid cell experiments using only open source software is presented.


Assuntos
Grafite/química , Microscopia Eletrônica de Transmissão/métodos , Microtecnologia/instrumentação , Ouro/química , Nanopartículas/química , Nanopartículas/ultraestrutura , Polimetil Metacrilato/química , Compostos de Silício/química
4.
Lab Invest ; 99(8): 1245-1255, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30996296

RESUMO

The blood-cerebrospinal fluid barrier (BCSFB) plays important roles during the transport of substances into the brain, the pathogenesis of central nervous system (CNS) diseases, and neuro-immunological processes. Along these lines, transmigration of granulocytes across the blood-cerebrospinal fluid (CSF) barrier (BCSFB) is a hallmark of inflammatory events in the CNS. Choroid plexus (CP) epithelial cells are an important tool to generate in vitro models of the BCSFB. A porcine CP epithelial cell line (PCP-R) has been shown to present properties of the BCSFB, including a strong barrier function, when cultivated on cell culture filter inserts containing a membrane with 0.4 µm pore size. For optimal analysis of pathogen and host immune cell interactions with the basolateral side of the CP epithelium, which presents the physiologically relevant "blood side", the CP epithelial cells need to be grown on the lower face of the filter in an inverted cell culture insert model, with the supporting membrane possessing a pore size of at least 3.0 µm. Here, we demonstrate that PCP-R cells cultivated in the inverted model on filter support membranes with a pore size of 3.0 µm following a "conventional" protocol grow through the pores and cross the membrane, forming a second layer on the upper face. Therefore, we developed a cell cultivation protocol, which strongly reduces crossing of the membrane by the cells. Under these conditions, PCP-R cells retain important properties of a BCSFB model, as was observed by the formation of continuous tight junctions and a strong barrier function demonstrated by a high transepithelial electrical resistance and a low permeability for macromolecules. Importantly, compared with the conventional cultivation conditions, our optimized model allows improved investigations of porcine granulocyte transmigration across the PCP-R cell layer.


Assuntos
Barreira Hematoencefálica/fisiologia , Técnicas de Cultura de Células/métodos , Plexo Corióideo/citologia , Células Epiteliais , Granulócitos , Migração Transendotelial e Transepitelial/fisiologia , Animais , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Granulócitos/citologia , Granulócitos/metabolismo , Modelos Biológicos , Suínos
5.
Leuk Res ; 71: 47-54, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30005184

RESUMO

Despite the high prevalence of central nervous system (CNS) involvement in relapsing pediatric acute lymphoblastic leukemia (ALL), our understanding of CNS invasion is still vague. As lymphoblasts have to overcome the physiological blood-CNS barriers to enter the CNS, we investigated the cellular interactions of lymphoblasts with the choroid plexus (CP) epithelium of the blood-cerebrospinal fluid barrier (BCSFB). Both a precurser B cell ALL (pB-ALL) cell line (SD-1) and a T cell ALL (T-ALL) cell line (P12-Ishikawa) were able to actively cross the CP epithelium in a human in vitro model. We could illustrate a transcellular and (supposedly) paracellular transmigration by 3-dimensional immunofluorescence microscopy as well as electron microscopy. Chemotactic stimulation with CXCL12 during this process led to a significantly increased transmigration and blocking CXCL12/CXCR4-signaling by the CXCR4-inhibitor AMD3100 inhibited this effect. However, CXCR4 expression in primary ALL samples did not correlate to CNS disease, indicating that CXCR4-driven CNS invasion across the BCSFB might be a general property of pediatric ALL. Notably, we present a unique in vitro BCSFB model suitable to study CNS invasion of lymphoblasts in a human setting, providing the opportunity to investigate experimental variables, which may determine CNS disease childhood ALL.


Assuntos
Plexo Corióideo , Linfócitos/metabolismo , Invasividade Neoplásica/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Migração Transendotelial e Transepitelial/fisiologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Quimiocina CXCL12/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Técnicas In Vitro , Linfócitos/patologia , Masculino , Modelos Biológicos , Receptores CXCR4/metabolismo , Células Tumorais Cultivadas
6.
Development ; 144(5): 795-807, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28137894

RESUMO

Tissue regeneration depends on proliferative cells and on cues that regulate cell division, differentiation, patterning and the restriction of these processes once regeneration is complete. In planarians, flatworms with high regenerative potential, muscle cells express some of these instructive cues. Here, we show that members of the integrin family of adhesion molecules are required for the integrity of regenerating tissues, including the musculature. Remarkably, in regenerating ß1-integrin RNAi planarians, we detected increased numbers of mitotic cells and progenitor cell types, as well as a reduced ability of stem cells and lineage-restricted progenitor cells to accumulate at wound sites. These animals also formed ectopic spheroid structures of neural identity in regenerating heads. Interestingly, those polarized assemblies comprised a variety of neural cells and underwent continuous growth. Our study indicates that integrin-mediated cell adhesion is required for the regenerative formation of organized tissues and for restricting neurogenesis during planarian regeneration.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Integrina beta1/fisiologia , Neurogênese/fisiologia , Planárias/fisiologia , Regeneração/fisiologia , Animais , Padronização Corporal , Adesão Celular , Diferenciação Celular , Proliferação de Células , Hibridização In Situ , Neurônios/citologia , Filogenia , Interferência de RNA , Transdução de Sinais , Células-Tronco/citologia
7.
Cancer Cell Int ; 15: 102, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26500454

RESUMO

BACKGROUND: The central nervous system (CNS) is protected by several barriers, including the blood-brain (BBB) and blood-cerebrospinal fluid (BCSFB) barriers. Understanding how cancer cells circumvent these protective barriers to invade the CNS is of crucial interest, since brain metastasis during cancer is often a fatal event in both children and adults. However, whereas much effort has been invested in elucidating the process of tumor cell transmigration across the BBB, the role of the BCSFB might still be underestimated considering the significant number of meningeal cancer involvement. Our work aimed to investigate the transmigration of neuroblastoma cells across the BCSFB in vitro. METHODS: We used an inverted model of the human BCSFB presenting proper restrictive features including adequate expression of tight-junction proteins, low permeability to integrity markers, and high trans-epithelial electrical resistance. Two different human neuroblastoma cell lines (SH-SY5Y and IMR-32) were used to study the transmigration process by fluorescent microscopy analysis. RESULTS: The results show that neuroblastoma cells are able to actively cross the tight human in vitro BCSFB model within 24 h. The presence and transmigration of neuroblastoma cancer cells did not affect the barrier integrity within the duration of the experiment. CONCLUSIONS: In conclusion, we presume that the choroid plexus might be an underestimated site of CNS invasion, since neuroblastoma cell lines are able to actively cross a choroid plexus epithelial cell layer. Further studies are warranted to elucidate the molecular mechanisms of tumor cell transmigration in vitro and in vivo.

8.
Cell Rep ; 10(2): 253-65, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25558068

RESUMO

Wnt/ß-catenin signaling regulates tissue homeostasis and regeneration in metazoans. In planarians-flatworms with high regenerative potential-Wnt ligands are thought to control tissue polarity by shaping a ß-catenin activity gradient along the anterior-posterior axis, yet the downstream mechanisms are poorly understood. We performed an RNA sequencing (RNA-seq)-based screen and identified hundreds of ß-catenin-dependent transcripts, of which several were expressed in muscle tissue and stem cells in a graded fashion. In particular, a teashirt (tsh) ortholog was induced in a ß-catenin-dependent manner during regeneration in planarians and zebrafish, and RNAi resulted in two-headed planarians. Strikingly, intact planarians depleted of tsh induced anterior markers and slowly transformed their tail into a head, reminiscent of ß-catenin RNAi phenotypes. Given that ß-catenin RNAi enhanced the formation of muscle cells expressing anterior determinants in tail regions, our study suggests that this pathway controls tissue polarity through regulating the identity of differentiating cells during homeostasis and regeneration.


Assuntos
Padronização Corporal/fisiologia , Proteínas de Helminto/metabolismo , Proteínas Repressoras/metabolismo , beta Catenina/metabolismo , Animais , Sequência de Bases , Colágeno/metabolismo , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas de Helminto/antagonistas & inibidores , Proteínas de Helminto/genética , Dados de Sequência Molecular , Planárias , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Regeneração , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Transcriptoma , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Peixe-Zebra , beta Catenina/antagonistas & inibidores , beta Catenina/genética
9.
J Comp Neurol ; 523(8): 1202-21, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25556858

RESUMO

The zebrafish has become a model to study adult vertebrate neurogenesis. In particular, the adult telencephalon has been an intensely studied structure in the zebrafish brain. Differential expression of transcriptional regulators (TRs) is a key feature of development and tissue homeostasis. Here we report an expression map of 1,202 TR genes in the telencephalon of adult zebrafish. Our results are summarized in a database with search and clustering functions to identify genes expressed in particular regions of the telencephalon. We classified 562 genes into 13 distinct patterns, including genes expressed in the proliferative zone. The remaining 640 genes displayed unique and complex patterns of expression and could thus not be grouped into distinct classes. The neurogenic ventricular regions express overlapping but distinct sets of TR genes, suggesting regional differences in the neurogenic niches in the telencephalon. In summary, the small telencephalon of the zebrafish shows a remarkable complexity in TR gene expression. The adult zebrafish telencephalon has become a model to study neurogenesis. We established the expression pattern of more than 1200 transcription regulators (TR) in the adult telencephalon. The neurogenic regions express overlapping but distinct sets of TR genes suggesting regional differences in the neurogenic potential.


Assuntos
Células-Tronco Neurais/metabolismo , Telencéfalo/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Atlas como Assunto , Expressão Gênica , Imuno-Histoquímica , Hibridização In Situ , Telencéfalo/anatomia & histologia , Peixe-Zebra/anatomia & histologia
10.
Stem Cells ; 33(3): 892-903, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25376791

RESUMO

The teleost brain has the remarkable ability to generate new neurons and to repair injuries during adult life stages. Maintaining life-long neurogenesis requires careful management of neural stem cell pools. In a genome-wide expression screen for transcription regulators, the id1 gene, encoding a negative regulator of E-proteins, was found to be upregulated in response to injury. id1 expression was mapped to quiescent type I neural stem cells in the adult telencephalic stem cell niche. Gain and loss of id1 function in vivo demonstrated that Id1 promotes stem cell quiescence. The increased id1 expression observed in neural stem cells in response to injury appeared independent of inflammatory signals, suggesting multiple antagonistic pathways in the regulation of reactive neurogenesis. Together, we propose that Id1 acts to maintain the neural stem cell pool by counteracting neurogenesis-promoting signals.


Assuntos
Encéfalo/citologia , Proteína 2 Inibidora de Diferenciação/fisiologia , Neurogênese/fisiologia , Neuroglia/citologia , Telencéfalo/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/fisiologia , Animais , Encéfalo/metabolismo , Proliferação de Células/fisiologia , Proteína 2 Inibidora de Diferenciação/genética , Proteína 2 Inibidora de Diferenciação/metabolismo , Neuroglia/metabolismo , Telencéfalo/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
11.
Development ; 140(22): 4499-509, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24131630

RESUMO

In contrast to adult vertebrates, which have limited capacities for neurogenesis, adult planarians undergo constitutive cellular turnover during homeostasis and are even able to regenerate a whole brain after decapitation. This enormous plasticity derives from pluripotent stem cells residing in the planarian body in large numbers. It is still obscure how these stem cells are programmed for differentiation into specific cell lineages and how lineage identity is maintained. Here we identify a Pitx transcription factor of crucial importance for planarian regeneration. In addition to patterning defects that are co-dependent on the LIM homeobox transcription factor gene islet1, which is expressed with pitx at anterior and posterior regeneration poles, RNAi against pitx results in islet1-independent specific loss of serotonergic (SN) neurons during regeneration. Besides its expression in terminally differentiated SN neurons we found pitx in stem cell progeny committed to the SN fate. Also, intact pitx RNAi animals gradually lose SN markers, a phenotype that depends neither on increased apoptosis nor on stem cell-based turnover or transdifferentiation into other neurons. We propose that pitx is a terminal selector gene for SN neurons in planarians that controls not only their maturation but also their identity by regulating the expression of the Serotonin production and transport machinery. Finally, we made use of this function of pitx and compared the transcriptomes of regenerating planarians with and without functional SN neurons, identifying at least three new neuronal targets of Pitx.


Assuntos
Linhagem da Célula , Fatores de Transcrição Box Pareados/metabolismo , Planárias/citologia , Planárias/metabolismo , Neurônios Serotoninérgicos/citologia , Neurônios Serotoninérgicos/metabolismo , Animais , Apoptose/genética , Biomarcadores/metabolismo , Padronização Corporal/genética , Diferenciação Celular/genética , Transdiferenciação Celular/genética , Regulação da Expressão Gênica , Proteínas com Homeodomínio LIM/metabolismo , Dados de Sequência Molecular , Planárias/genética , Interferência de RNA , Regeneração/genética , Serotonina/biossíntese , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma/genética
12.
Dev Biol ; 380(2): 351-62, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23684812

RESUMO

Transcription is the primary step in the retrieval of genetic information. A substantial proportion of the protein repertoire of each organism consists of transcriptional regulators (TRs). It is believed that the differential expression and combinatorial action of these TRs is essential for vertebrate development and body homeostasis. We mined the zebrafish genome exhaustively for genes encoding TRs and determined their expression in the zebrafish embryo by sequencing to saturation and in situ hybridisation. At the evolutionary conserved phylotypic stage, 75% of the 3302 TR genes encoded in the genome are already expressed. The number of expressed TR genes increases only marginally in subsequent stages and is maintained during adulthood suggesting important roles of the TR genes in body homeostasis. Fewer than half of the TR genes (45%, n=1711 genes) are expressed in a tissue-restricted manner in the embryo. Transcripts of 207 genes were detected in a single tissue in the 24h embryo, potentially acting as regulators of specific processes. Other TR genes were expressed in multiple tissues. However, with the exception of certain territories in the nervous system, we did not find significant synexpression suggesting that most tissue-restricted TRs act in a freely combinatorial fashion. Our data indicate that elaboration of body pattern and function from the phylotypic stage onward relies mostly on redeployment of TRs and post-transcriptional processes.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Genes Reguladores , Peixe-Zebra/embriologia , Animais , Padronização Corporal , Biblioteca Gênica , Transcrição Gênica , Peixe-Zebra/genética
13.
Dev Dyn ; 240(9): 2221-31, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22016188

RESUMO

In contrast to mammals, the brain of the adult zebrafish has a remarkable ability to regenerate. In mammals, injuries induce proliferation of astrocytes and oligodendrocyte progenitors contributing to the formation of a glial scar. We analyzed the proliferation of glial cells and microglia in response to stab injury in the adult zebrafish telencephalon: Radial glial markers were up-regulated at the ventricle and co-expressed the proliferation nuclear antigen (PCNA). Microglia and oligodendrocyte progenitors accumulated transiently at the site of lesion. However, we could not find evidence of permanent scar formation. Parenchymal proliferation was almost negligible in comparison to the increase in proliferation at the ventricular zone. This suggests that most of the cellular material for regeneration is derived from regions of constitutive neurogenesis. Remarkably, the proliferative response is almost completely restricted to the lesioned hemisphere indicating that signals inducing regeneration remain mainly confined within the lesioned half of the telencephalon.


Assuntos
Regeneração/fisiologia , Telencéfalo/citologia , Telencéfalo/fisiologia , Animais , Imuno-Histoquímica , Hibridização In Situ , Neuroglia/citologia , Oligodendroglia/citologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Peixe-Zebra
14.
Dev Dyn ; 239(12): 3336-49, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20981834

RESUMO

The telencephalon of the adult zebrafish is highly proliferative: Dividing cells are found along the entire ventricular zone and in the parenchyma. Here, we investigated the relation of proliferating cells in the telencephalic parenchyma to the oligodendrocyte lineage. We find at least three different cell types of the oligodendrocyte lineage (olig2-and sox10-positive) in the parenchyma of the telencephalon: Proliferating progenitors (PCNA-positive), including a subpopulation of slowly dividing progenitors (long term label-retaining), as well as mature oligodendrocytes (Mbp-positive) and presumptive quiescent OPCs (neither Mbp-positive nor proliferating). Furthermore, in the ventricular zone (in and ventral to the RMS), two different subpopulations of olig2-positive cell populations are present. Since these ventricular olig2-positive cells do not express the oligodendrocyte marker sox10, it is not clear whether these cells indeed belong to the oligodendrocyte lineage. Taken together, we detected at least five different classes of olig2-positive cells in the telencephalon of the adult zebrafish.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Telencéfalo/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Imuno-Histoquímica , Hibridização In Situ , Microscopia Confocal , Proteínas do Tecido Nervoso/genética , Fator de Transcrição 2 de Oligodendrócitos , Proteínas de Peixe-Zebra/genética
15.
Glia ; 58(7): 870-88, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20155821

RESUMO

The zebrafish has become a new model for adult neurogenesis, owing to its abundant neurogenic areas in most brain subdivisions. Radial glia-like cells, actively proliferating cells, and label-retaining progenitors have been described in these areas. In the telencephalon, this complexity is enhanced by an organization of the ventricular zone (VZ) in fast and slow-dividing domains, suggesting the existence of heterogeneous progenitor types. In this work, we studied the expression of various transgenic or immunocytochemical markers for glial cells (gfap:gfp, cyp19a1b:gfp, BLBP, and S100beta), progenitors (nestin:gfp and Sox2), and neuroblasts (PSA-NCAM) in cycling progenitors of the adult zebrafish telencephalon (identified by expression of proliferating cell nuclear antigen (PCNA), MCM5, or bromodeoxyuridine incorporation). We demonstrate the existence of distinct populations of dividing cells at the adult telencephalic VZ. Progenitors of the overall slow-cycling domains express high levels of Sox2 and nestin:gfp as well as all glial markers tested. In contrast, domains with an overall fast division rate are characterized by low or missing expression of glial markers. PCNA-positive cells in fast domains further display a morphology distinct from radial glia and co-express PSA-NCAM, suggesting that they are early neuronal precursors. In addition, the VZ contains cycling progenitors that express neither glial markers nor nestin:gfp, but are positive for Sox2 and PSA-NCAM, identifying them as committed neuroblasts. On the basis of the marker gene expression and distinct cell morphologies, we propose a classification for the dividing cell states at the zebrafish adult telencephalic VZ.


Assuntos
Diferenciação Celular/fisiologia , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Células-Tronco/citologia , Telencéfalo/citologia , Peixe-Zebra/anatomia & histologia , Animais , Animais Geneticamente Modificados , Biomarcadores/análise , Biomarcadores/metabolismo , Divisão Celular/fisiologia , Proliferação de Células , Proteínas de Filamentos Intermediários/análise , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Ventrículos Laterais , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nestina , Molécula L1 de Adesão de Célula Nervosa/análise , Molécula L1 de Adesão de Célula Nervosa/genética , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fatores de Transcrição SOX/análise , Fatores de Transcrição SOX/genética , Fatores de Transcrição SOX/metabolismo , Ácidos Siálicos/análise , Ácidos Siálicos/genética , Ácidos Siálicos/metabolismo , Células-Tronco/classificação , Células-Tronco/fisiologia , Telencéfalo/fisiologia , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/análise , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
16.
Dev Dyn ; 238(6): 1407-11, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19253406

RESUMO

Small GTPases of the Rho family are important modulators of the cytoskeleton and regulate morphogenetic cell movements during embryonic development. In the Xenopus embryo, Rho signaling contributes to the regulation of convergent extension (CE) movements in gastrula and neurula stages as well as to tissue separation (TS). Here we describe a method that allows the detection of activated (GTP-bound) Rho in fixed Xenopus tissue. The assay makes use of a fusion protein of Rhotekin and Green-Fluorescent-Protein (RBD-GFP), which is produced in bacteria and can be purified biochemically. This technique allows a temporal and spatial analysis of Rho signaling in the developing embryo. Developmental Dynamics 238:1407-1411, 2009. (c) 2009 Wiley-Liss, Inc.


Assuntos
Imuno-Histoquímica/métodos , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Xenopus/genética , Xenopus laevis/anatomia & histologia , Proteínas rho de Ligação ao GTP/genética
17.
Dev Dyn ; 238(2): 475-86, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19161226

RESUMO

Adult neurogenesis arises from niches that harbor neural stem cells (NSC). Although holding great promise for regenerative medicine, the identity of NSC remains elusive. In mammals, a key attribute of NSC is the expression of the filamentous proteins glial fibrillary acidic protein (GFAP) and NESTIN. To assess whether these two markers are relevant in the fish model, two transgenic zebrafish lines for gfap and nestin were generated. Analysis of adult brains showed that the fusion GFAP-green fluorescent protein closely mimics endogenous GFAP, while the nestin transgene recapitulates nestin at the ventricular zones. Cells expressing the two reporters display radial glial morphology, colocalize with the NSC marker Sox2, undergo proliferation, and are capable of self-renewal within the matrix of distinct thickness in the telencephalon. Together, these two transgenic lines reveal a conserved feature of putative NSC in the adult zebrafish brain and provide a means for the identification and manipulation of these cells in vivo.


Assuntos
Encéfalo/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Células-Tronco/citologia , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/citologia , Genes Reporter , Proteína Glial Fibrilar Ácida/genética , Proteínas de Filamentos Intermediários/genética , Proteínas do Tecido Nervoso/genética , Nestina , Neurônios/metabolismo , Prosencéfalo/citologia , Prosencéfalo/metabolismo , Fatores de Transcrição SOXB1/genética , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...