Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurodev Disord ; 16(1): 30, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872088

RESUMO

Fragile X syndrome (FXS) is caused by epigenetic silencing of the X-linked fragile X messenger ribonucleoprotein 1 (FMR1) gene located on chromosome Xq27.3, which leads to the loss of its protein product, fragile X messenger ribonucleoprotein (FMRP). It is the most prevalent inherited form of intellectual disability and the highest single genetic cause of autism. Since the discovery of the genetic basis of FXS, extensive studies using animal models and human pluripotent stem cells have unveiled the functions of FMRP and mechanisms underlying FXS. However, clinical trials have not yielded successful treatment. Here we review what we have learned from commonly used models for FXS, potential limitations of these models, and recommendations for future steps.


Assuntos
Modelos Animais de Doenças , Síndrome do Cromossomo X Frágil , Animais , Humanos , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Células-Tronco Pluripotentes
2.
Stem Cell Reports ; 19(6): 796-816, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38759644

RESUMO

Human brain organoid models have emerged as a promising tool for studying human brain development and function. These models preserve human genetics and recapitulate some aspects of human brain development, while facilitating manipulation in an in vitro setting. Despite their potential to transform biology and medicine, concerns persist about their fidelity. To fully harness their potential, it is imperative to establish reliable analytic methods, ensuring rigor and reproducibility. Here, we review current analytical platforms used to characterize human forebrain cortical organoids, highlight challenges, and propose recommendations for future studies to achieve greater precision and uniformity across laboratories.


Assuntos
Encéfalo , Organoides , Humanos , Organoides/citologia , Organoides/metabolismo , Encéfalo/citologia , Reprodutibilidade dos Testes , Prosencéfalo/citologia
3.
Neuron ; 111(24): 3988-4005.e11, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37820724

RESUMO

Fragile X messenger ribonucleoprotein 1 protein (FMRP) deficiency leads to fragile X syndrome (FXS), an autism spectrum disorder. The role of FMRP in prenatal human brain development remains unclear. Here, we show that FMRP is important for human and macaque prenatal brain development. Both FMRP-deficient neurons in human fetal cortical slices and FXS patient stem cell-derived neurons exhibit mitochondrial dysfunctions and hyperexcitability. Using multiomics analyses, we have identified both FMRP-bound mRNAs and FMRP-interacting proteins in human neurons and unveiled a previously unknown role of FMRP in regulating essential genes during human prenatal development. We demonstrate that FMRP interaction with CNOT1 maintains the levels of receptor for activated C kinase 1 (RACK1), a species-specific FMRP target. Genetic reduction of RACK1 leads to both mitochondrial dysfunctions and hyperexcitability, resembling FXS neurons. Finally, enhancing mitochondrial functions rescues deficits of FMRP-deficient cortical neurons during prenatal development, demonstrating targeting mitochondrial dysfunction as a potential treatment.


Assuntos
Transtorno do Espectro Autista , Síndrome do Cromossomo X Frágil , Doenças Mitocondriais , Humanos , Proteína do X Frágil da Deficiência Intelectual/genética , Transtorno do Espectro Autista/metabolismo , Neurônios/metabolismo , Neurogênese , Doenças Mitocondriais/metabolismo , Receptores de Quinase C Ativada/genética , Receptores de Quinase C Ativada/metabolismo , Proteínas de Neoplasias/metabolismo , Fatores de Transcrição/metabolismo
4.
Nat Commun ; 14(1): 3801, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365192

RESUMO

Fragile X messenger ribonucleoprotein 1 protein (FMRP) binds many mRNA targets in the brain. The contribution of these targets to fragile X syndrome (FXS) and related autism spectrum disorder (ASD) remains unclear. Here, we show that FMRP deficiency leads to elevated microtubule-associated protein 1B (MAP1B) in developing human and non-human primate cortical neurons. Targeted MAP1B gene activation in healthy human neurons or MAP1B gene triplication in ASD patient-derived neurons inhibit morphological and physiological maturation. Activation of Map1b in adult male mouse prefrontal cortex excitatory neurons impairs social behaviors. We show that elevated MAP1B sequesters components of autophagy and reduces autophagosome formation. Both MAP1B knockdown and autophagy activation rescue deficits of both ASD and FXS patients' neurons and FMRP-deficient neurons in ex vivo human brain tissue. Our study demonstrates conserved FMRP regulation of MAP1B in primate neurons and establishes a causal link between MAP1B elevation and deficits of FXS and ASD.


Assuntos
Transtorno do Espectro Autista , Síndrome do Cromossomo X Frágil , Adulto , Humanos , Animais , Camundongos , Masculino , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Transtorno do Espectro Autista/genética , Comportamento Social , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Autofagia/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...