Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 10: 884, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354761

RESUMO

Sugar transport and partitioning play key roles in the regulation of plant development and responses to biotic and abiotic factors. During plant/pathogen interactions, there is a competition for sugar that is controlled by membrane transporters and their regulation is decisive for the outcome of the interaction. SWEET sugar transporters are the targets of extracellular pathogens, which modify their expression to acquire the sugars necessary to their growth (Chen et al., 2010). The regulation of carbon allocation and sugar partitioning in the interaction between grapevine (Vitis vinifera) and its pathogens is poorly understood. We previously characterized the SWEET family in V. vinifera and showed that SWEET4 could be involved in resistance to the necrotrophic fungus Botrytis cinerea in Arabidopsis (Chong et al., 2014). To study the role of VvSWEET4 in grapevine, we produced V. vinifera cv. Syrah hairy roots overexpressing VvSWEET4 under the control of the CaMV 35S promoter (VvSWEET4 OX). High levels of VvSWEET4 expression in hairy roots resulted in enhanced growth on media containing glucose or sucrose and increased contents in glucose and fructose. Sugar uptake assays further showed an improved glucose absorption in VvSWEET4 overexpressors. In parallel, we observed that VvSWEET4 expression was significantly induced after infection of wild type grapevine hairy roots with Pythium irregulare, a soilborne necrotrophic pathogen. Importantly, grapevine hairy roots overexpressing VvSWEET4 exhibited an improved resistance level to P. irregulare infection. This resistance phenotype was associated with higher glucose pools in roots after infection, higher constitutive expression of several genes involved in flavonoid biosynthesis, and higher flavanol contents. We propose that high sugar levels in VvSWEET4 OX hairy roots provides a better support to the increased energy demand during pathogen infection. In addition, high sugar levels promote biosynthesis of flavonoids with antifungal properties. Overall, this work highlights the key role of sugar transport mediated by SWEET transporters for secondary metabolism regulation and pathogen resistance in grapevine.

2.
J Exp Bot ; 69(16): 4099-4112, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29860350

RESUMO

In grafted plants, rootstocks assure the mineral nutrition of the scion and modify its development. In this study, we show that two grapevine rootstock genotypes have different shoot branching architectures when cultivated as cuttings and that this trait is transmitted to the scion when grafted. Shoot branching plasticity in response to nitrogen supply was also studied. As strigolactones are known to have a role in the regulation of shoot development in response to nutrient availability, their involvement in the control of scion architecture by the rootstock was investigated. Functional characterization of putative grapevine strigolactone biosynthetic genes in Arabidopsis mutants or grapevine cell suspensions showed similar functions to those of Arabidopsis. Both rootstocks produced strigolactone-like compounds; the quantity produced in response to nitrogen treatments differed between the two rootstock genotypes and correlated with the expression of putative strigolactone biosynthetic genes. Exudation of strigolactone-like compounds by both rootstocks was closely related to the developmental pattern of the scion in grafted plants. These results suggest that differential regulation of strigolactone biosynthesis in response to nitrogen availability may contribute to the control of scion development conferred by each rootstock genotype.


Assuntos
Lactonas/metabolismo , Nitrogênio/metabolismo , Vitis/metabolismo , Disponibilidade Biológica , Raízes de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...