Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med ; 120: 103332, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518627

RESUMO

As part of translational research projects, mice may be irradiated on radiobiology platforms such as the one at the ARRONAX cyclotron. Generally, these platforms do not feature an integrated imaging system. Moreover, in the context of ultra-high dose-rate radiotherapy (FLASH-RT), treatment planning should consider potential changes in the beam characteristics and internal movements in the animal. A patient-like set-up and methodology has been implemented to ensure target coverage during conformal irradiations of the brain, lungs and intestines. In addition, respiratory cycle amplitudes were quantified by fluoroscopic acquisitions on a mouse, to ensure organ coverage and to assess the impact of respiration during FLASH-RT using the 4D digital phantom MOBY. Furthermore, beam incidence direction was studied from mice µCBCT and Monte Carlo simulations. Finally,in vivodosimetry with dose-rate independent radiochromic films (OC-1) and their LET dependency were investigated. The immobilization system ensures that the animal is held in a safe and suitable position. The geometrical evaluation of organ coverage, after the addition of the margins around the organs, was satisfactory. Moreover, no measured differences were found between CONV and FLASH beams enabling a single model of the beamline for all planning studies. Finally, the LET-dependency of the OC-1 film was determined and experimentally verified with phantoms, as well as the feasibility of using these filmsin vivoto validate the targeting. The methodology developed ensures accurate and reproducible preclinical irradiations in CONV and FLASH-RT without in-room image guidance in terms of positioning, dose calculation andin vivodosimetry.


Assuntos
Terapia com Prótons , Radioterapia Conformacional , Humanos , Camundongos , Animais , Prótons , Terapia com Prótons/métodos , Pulmão , Imagens de Fantasmas , Método de Monte Carlo , Carmustina , Etoposídeo , Dosagem Radioterapêutica
2.
Radiat Res ; 198(3): 318-324, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35675499

RESUMO

During ultra-high dose rate (UHDR) external radiation therapy, healthy tissues appear to be spared while tumor control remains the same compared to conventional dose rate. However, the understanding of radiochemical and biological mechanisms involved are still to be discussed. This study shows how the hydrogen peroxide (H2O2) production, one of the reactive oxygen species (ROS), could be controlled by early heterogenous radiolysis processes in water during UHDR proton-beam irradiations. Pure water was irradiated in the plateau region (track-segment) with 68 MeV protons under conventional (0.2 Gy/s) and several UHDR conditions (40 Gy/s to 60 kGy/s) at the ARRONAX cyclotron. Production of H2O2 was then monitored using the Ghormley triiodide method. New values of GTS(H2O2) were added in conventional dose rate. A substantial decrease in H2O2 production was observed from 0.2 to 1.5 kGy/s with a more dramatic decrease below 100 Gy/ s. At higher dose rate, up to 60 kGy/s, the H2O2 production stayed stable with a mean decrease of 38% ± 4%. This finding, associated to the decrease in the production of hydroxyl radical (•OH) already observed in other studies in similar conditions can be explained by the well-known spur theory in radiation chemistry. Thus, a two-step FLASH-RT mechanism can be envisioned: an early step at the microsecond scale mainly controlled by heterogenous radiolysis, and a second, slower, dominated by O2 depletion and biochemical processes. To validate this hypothesis, more measurements of radiolytic species will soon be performed, including radicals and associated lifetimes.


Assuntos
Peróxido de Hidrogênio , Prótons , Radical Hidroxila , Radioquímica , Água
3.
Med Phys ; 49(4): 2732-2745, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35179234

RESUMO

PURPOSE: The ARRONAX cyclotron facility offers the possibility to deliver proton beams from low to ultra-high dose rates (UHDR). As a good control of the dosimetry is a prerequisite of UHDR experimentations, we evaluated in different conditions the usability and the dose rate dependency of several radiochromic films commonly used for dosimetry in radiotherapy. METHODS: We compared the dose rate dependency of three types of radiochromic films: GAFchromic™ EBT3 and GAFchromic™ EBT-XD (Ashland Inc., Wayne, NJ, USA), and OrthoChromic OC-1 (OrthoChrome Inc., Hillsborough, NJ, USA), after proton irradiations at various mean dose rates (0.25, 40, 1500, and 7500 Gy/s) and for 10 doses (2-130 Gy). We also evaluated the dose rate dependency of each film considering beam structures, from single pulse to multiple pulses with various frequencies. RESULTS: EBT3 and EBT-XD films showed differences of response between conventional (0.25 Gy/s) and UHDR (7500 Gy/s) conditions, above 10 Gy. On the contrary, OC-1 films did not present overall difference of response for doses except below 3 Gy. We observed an increase of the netOD with the mean dose rate for EBT3 and EBT-XD films. OC-1 films did not show any impact of the mean dose rate up to 7500 Gy/s, above 3 Gy. No difference was found based on the beam structure, for all three types of films. CONCLUSIONS: EBT3 and EBT-XD radiochromic films should be used with caution for the dosimetry of UHDR proton beams over 10 Gy. Their overresponse, which increases with mean dose rate and dose, could lead to non-negligible overestimations of the absolute dose. OC-1 films are dose rate independent up to 7500 Gy/s in proton beams. Films response is not impacted by the beam structure. A broader investigation of the usability of OC-1 films in UHDR conditions should be conducted at intermediate and higher mean dose rates and other beam energies.


Assuntos
Dosimetria Fotográfica , Terapia com Prótons , Calibragem , Prótons , Radiometria
4.
Cancers (Basel) ; 13(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920758

RESUMO

Proton therapy (PRT) is an irradiation technique that aims at limiting normal tissue damage while maintaining the tumor response. To study its specificities, the ARRONAX cyclotron is currently developing a preclinical structure compatible with biological experiments. A prerequisite is to identify and control uncertainties on the ARRONAX beamline, which can lead to significant biases in the observed biological results and dose-response relationships, as for any facility. This paper summarizes and quantifies the impact of uncertainty on proton range, absorbed dose, and dose homogeneity in a preclinical context of cell or small animal irradiation on the Bragg curve, using Monte Carlo simulations. All possible sources of uncertainty were investigated and discussed independently. Those with a significant impact were identified, and protocols were established to reduce their consequences. Overall, the uncertainties evaluated were similar to those from clinical practice and are considered compatible with the performance of radiobiological experiments, as well as the study of dose-response relationships on this proton beam. Another conclusion of this study is that Monte Carlo simulations can be used to help build preclinical lines in other setups.

5.
Radiat Prot Dosimetry ; 183(1-2): 270-273, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668799

RESUMO

The cyclotron ARRONAX can deliver different types of particles (protons, deuterons, alpha-particles) in an energy range up to 68 MeV. One of its six experimental halls is dedicated to studying the interactions of radiation with matter including living matter. A horizontal beamline for cell irradiation has been setup and characterized. The radiobiological characterization was done in terms of V79 cells survival after irradiation with 68 MeV protons. The results demonstrate that radiobiological studies can be successfully performed confirming the high potential of the facility.


Assuntos
Ciclotrons , Radiobiologia/instrumentação , Desenho de Equipamento , França , Humanos
6.
Environ Monit Assess ; 190(1): 38, 2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29270672

RESUMO

As part of a large hydroelectric project in northern Québec (Canada), a portion of the flow of the Rupert River was diverted toward the existing La Grande hydroelectric complex. As a result of the partial diversion, the discharge of the Rupert River at its mouth is reduced by an average of 50% annually. This corresponds to an 18% decrease in the total freshwater inflow into the bay and, thus, to a shift of the upstream limit of the saltwater intrusion in Rupert Bay. Changes in saltwater intrusion had been predicted numerically as part of the project's environmental impact assessment (EIA). In the project's conditions of authorization, monitoring the hydraulic conditions and the extent of saltwater intrusion in the Rupert Bay was required by government authorities. The objective of this paper is to present the results of this environmental monitoring and, more specifically, to validate the modifications predicted in the EIA in terms of both saltwater intrusion limit and hydraulic conditions in the Rupert Bay. Results obtained during 2 years of monitoring are within the predicted trends and order of magnitude of changes anticipated in the EIA. The results, thus, confirm that the shift of the upstream limit of the saltwater front along the channels of the bay was conservatively predicted by numerical modeling.


Assuntos
Baías/química , Monitoramento Ambiental/métodos , Rios/química , Água do Mar/química , Hidrodinâmica , Centrais Elétricas , Quebeque
7.
Front Med (Lausanne) ; 2: 31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26029696

RESUMO

With the recent interest on the theranostic approach, there has been a renewed interest for alternative radionuclides in nuclear medicine. They can be produced using common production routes, i.e., using protons accelerated by biomedical cyclotrons or neutrons produced in research reactors. However, in some cases, it can be more valuable to use deuterons as projectiles. In the case of Cu-64, smaller quantities of the expensive target material, Ni-64, are used with deuterons as compared with protons for the same produced activity. For the Sc-44m/Sc-44g generator, deuterons afford a higher Sc-44m production yield than with protons. Finally, in the case of Re-186g, deuterons lead to a production yield five times higher than protons. These three examples show that it is of interest to consider not only protons or neutrons but also deuterons to produce alternative radionuclides.

8.
Nucl Med Biol ; 41 Suppl: e16-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24342655

RESUMO

INTRODUCTION: The ARRONAX cyclotron, acronym for "Accelerator for Research in Radiochemistry and Oncology at Nantes Atlantique" is a new facility installed in Nantes, France. A dedicated program has been launched on production of innovative radioisotopes for PET imaging and for ß- and α targeted radiotherapy using protons or α particles. Since the accelerator is also able to deliver deuteron beams up to 35 MeV, we have reconsidered the possibility of using them to produce medical isotopes. Indeed, in some cases, the use of deuterons allows higher production yield than protons. METHODS: (186)Re is a ß- emitter which has chemical properties close to the widely used (99m)Tc and has been used in clinical trials for palliation of painful bone metastases resulting from prostate and breast cancer. (186)Re production cross section has been measured between 9 and 23 MeV using the ARRONAX deuteron beam and the stacked-foil technique. A novelty in our work is the use of a monitor foil behind each (nat)W target foil in order to record efficiently the deuteron incident flux and energies all over the stack relying on the International Atomic Energy Agency (IAEA) recommended cross section of the (nat)Ti(d,x)(48)V reaction. Since a good optimization process is supposed to find the best compromise between production yield and purity of the final product, isotope of interest and contaminants created during irradiation are measured using gamma spectrometry. RESULTS: Our new sets of data are presented and compared with the existing ones and with results given by the TALYS code calculations. The thick target yield (TTY) has been calculated after the fit of our experimental values and compared with the IAEA recommended ones. CONCLUSIONS: Presented values are in good agreement with existing data. The deuteron production route is clearly the best choice with a TTY of 7.8 MB/µAh at 30 MeV compared to 2.4 MBq/µAh for proton as projectile at the same energy. The TALYS code gives satisfactory results for (183,186)Re isotopes.


Assuntos
Deutério/química , Radioquímica/métodos , Radioisótopos/química , Rênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...