Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 336
Filtrar
1.
ACS Appl Mater Interfaces ; 11(38): 35429-35437, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31483594

RESUMO

A microreactor that can confine chemical reactions exclusively in tiny vessels with the volume of ∼0.015 µm3 is introduced. Aluminum inversed hollow nanocone arrays (IHNAs) are fabricated by a simple and efficient colloidal lithography method. Ag and Au nanoparticles (NPs), as well as polypyrrole, grow exclusively in the conic cavities under light illumination. The photocatalytic effect arising from the plasmonic enhanced electric fields (E-fields) of IHNAs boosts the reactions and is in charge of the submicrometer site-selectivity. By partially inhibiting light to IHNAs, various hierarchical patterns at the macro-, micro-, and sub-microscale are obtained, inspiring a facile patterning technique by varying the light source. In addition, the Al IHNA films are transferred to flexible and curved substrates with unchanged performances, showing high flexibility for wide applications. Microreactors based on the IHNAs will contribute to the control of chemical reactions at different dimensions and offer great potentials in developing novel nanofabrication techniques.

2.
Nanoscale ; 11(8): 3583-3590, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30729970

RESUMO

We combine anisotropic wet etching and nanoskiving to create a novel three-dimensional (3D) nanoantenna for plasmonic nanofocusing, vertically aligned zig-zag nanogaps, constituted of nanogaps with defined angles. Instead of conventional lithography, we used the thickness of a self-assembled monolayer (SAM) to define nanogaps with high throughput, and anisotropic etching of Si V-grooves to naturally define ultra-sharp tips. Both nanogaps and sharp tips can synergistically squeeze the electro-magnetic (EM) field and excite 3D nanofocusing, enabling great potential applications in chemical sensing and plasmonic devices. The dependence of the EM field enhancement on structural features is systematically investigated and optimized. We found that the field enhancement and confinement are stronger at the tipped-nanogap compared to what standalone tips or nanogaps produce. The intensity of surface-enhanced Raman spectroscopy (SERS) recorded on the 70.5° tipped-nanogaps is 45 times higher than that recorded with linear nanogaps and 5 times higher than that recorded with tip-only nanowires, which is attributed to the integration of the tip and gap in plasmonic nanostructures. This proposed nanofabrication technique and the resulting structures equipped with a strongly enhanced EM field will promote broad applications for nanophotonics and surface-enhanced spectroscopy.

3.
ACS Nano ; 12(11): 10914-10923, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30335967

RESUMO

Hollow nanocone array (HNCA) films (cm × cm), composed of two Ag and Au nanoshells, are fabricated via a low-cost and efficient colloidal lithography technique. The relative position of the Ag and Au nanoshells can be controlled to generate various chiral asymmetries. A pronounced chiroptical response is observed in the ultraviolet-visible region with the anisotropy factor up to 10-1, which is rooted in the asymmetric current oscillations and electric field distributions. Beyond previous reports on plasmonic chiral metamaterials, the HNCA can be free-standing and further transferred to other functional and flexible substrates, such as polydimethylsiloxane (PDMS), highly curved surfaces, prepatterned films, and hydrogels, while keeping the original features. The good transferability would make HNCA more flexible in specific applications. Furthermore, the chiral HNCAs offer a series of chiral resonance cavities, which are conducive for the research of chiral sensing, confinement, chiral signal transmission, and amplification. Overall, this work provides a scalable metamaterial to tune the plasmonic chiral response, and HNCA would be a promising candidate of the components in chiral optical devices and sensors.

4.
Langmuir ; 34(40): 11933-11942, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30125507

RESUMO

Polyelectrolyte multilayer (PEM) are thin polymeric films produced by alternating adsorption of positively and negatively charged polyelectrolytes (PE) on a substrate. These films are considered drug delivery agents as well as coating material for implants, due to their antibiofouling and biologically benign properties. For these reasons the film mechanical properties as well as response to mechanical stress are important measurement parameters. Especially intriguing is the correlation of the mechanical properties of PEM on macroscopic level with the structure of PEM on molecular level, which is addressed here for the first time. This study investigates PEM from PDADMA/PSS produced by spraying technique with neutron and X-ray reflectometry. Reflectometry technique provides precise information on thickness and density (i.e., electron density or scattering length density, respectively), and, this way, allows to conclude on changes in film composition. Thus, neutron and X-ray reflectometry technique is suitable to investigate the overall and the internal transformations, which PEM films might undergo upon exposure to mechanical load. During uniaxial elongation two regimes of PEM-deformation can be observed: An elastic regime at small elongations (below ca. 0.2%), which is characterized by a reversible change of film thickness, and a plastic regime with a permanent change above this limit. Both regimes have in common, that the mechanical load induces an increase of the film thickness, which is accompanied by an uptake of water from the surrounding atmosphere. The strain causes a molecular rearrangement within the PEM-structure of stratified layers, which, even in elastic regime, is permanent, although the thickness change remains reversible.

5.
Langmuir ; 34(33): 9768-9773, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30021432

RESUMO

The microtubule-kinesin system is used to form microtubule-based structures via microtubule gliding motility. On the kinesin-coated surface, the microtubules can be easily assembled into stable micro- and nanostructures like circles and microtubule bundles using the streptavidin-biotin system. Furthermore, these microtubules structures can still retain performance with kinesin motor movement in spite of different velocities. Collisions bear responsibility for the majority of events leading to circle formation. By taking advantage of biological substances, some micro- or nanostructures, which are difficult to fabricate by artificial processes, can be easily obtained.

6.
ACS Appl Mater Interfaces ; 10(27): 23081-23093, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29926731

RESUMO

It is well known that the activity and stability of electrocatalysts are largely dependent on their surface facets. In this work, we have successfully regulated surface facets of three-dimensional (3D) metallic Au m- n aerogels by salt-induced assembly of citrate-stabilized gold nanoparticles (Au NPs) of two different sizes and further size-dependent localized Ostwald ripening at controlled particle number ratios, where m and n represent the size of Au NPs. In addition, 3D Au m- n-Pd aerogels were further synthesized on the basis of Au m- n aerogels and also bear controlled surface facets because of the formation of ultrathin Pd layers on Au m- n aerogels. Taking the electrooxidation of small organic molecules (such as methanol and ethanol) by the resulting Au m- n and Au m- n-Pd aerogels as examples, it is found that surface facets of metallic aerogels with excellent performance can be regulated to realize preferential surface facets for methanol oxidation and ethanol oxidation, respectively. Moreover, they also indeed simultaneously bear high activity and excellent stability. Furthermore, their activities and stability are also highly dependent on the area ratio of active facets and inactive facets on their surfaces, respectively, and these ratios are varied via the mismatch of sizes of adjacent NPs. Thus, this work not only demonstrates the realization of the regulation of the surface facets of metallic aerogels by size-dependent localized Ostwald ripening but also will open up a new way to improve electrocatalytic performance of 3D metallic aerogels by surface regulation.

7.
Angew Chem Int Ed Engl ; 57(33): 10584-10588, 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-29888847

RESUMO

A trifunctional, partially fluorinated anthracene-substituted triptycene monomer was spread at an air/water interface into a monolayer, which was transformed into a long-range-ordered 2D polymer by irradiation with a standard UV lamp. The polymer was analyzed by Brewster angle microscopy, scanning tunneling microscopy measurements, and non-contact atomic force microscopy, which confirmed the generation of a network structure with lattice parameters that are virtually identical to a structural model network based on X-ray diffractometry of a closely related 2D polymer. The nc-AFM images highlight the long-range order over areas of at least 300×300 nm2 . As required for a 2D polymer, the pore sizes are monodisperse, except for the regions where the network is somewhat stretched because it spans over protrusions. Together with a previous report on the nature of the cross-links in this network, the structural information provided herein leaves no doubt that a 2D polymer has been synthesized under ambient conditions at an air/water interface.

8.
Adv Mater ; 30(9)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29327383

RESUMO

Structural colors originating from interaction of light with intricately arranged micro-/nanostructures have stimulated considerable interest because of their inherent photostability and energy efficiency. In particular, noniridescent structural color with wide viewing angle has been receiving increasing attention recently. However, no method is yet available for rapid and large-scale fabrication of full-spectrum structural color patterns with wide viewing angles. Here, infiltration-driven nonequilibrium assembly of colloidal particles on liquid-permeable and particle-excluding substrates is demonstrated to direct the particles to form amorphous colloidal arrays (ACAs) within milliseconds. The infiltration-assisted (IFAST) colloidal assembly opens new possibilities for rapid manufacture of noniridescent structural colors of ACAs and straightforward structural color mixing. Full-spectrum noniridescent structural colors are successfully produced by mixing primary structural colors of red, blue, and yellow using a commercial office inkjet printer. Rapid fabrication of large-scale structural color patterns with sophisticated color combination/layout by IFAST printing is realized. The IFAST technology is versatile for developing structural color patterns with wide viewing angles, as colloidal particles, inks, and substrates are flexibly designable for diverse applications.

9.
ACS Appl Mater Interfaces ; 10(3): 2368-2376, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29285927

RESUMO

Controlled phase transformation involving biomolecular organization to generate dynamic biomimetic self-assembly systems and functional materials is currently an appealing topic of research on molecular materials. Herein, we achieve by ultrasonic irradiation the direct solid-solid transition of bioinspired dipeptide organization from triclinic structured aggregates to  nanofibers and eventually to monoclinic nanobelts with strong polarized luminescence. It is suggested that the locally high temperature and pressure produced by cavitation effects cleaves the hydrophobic, π-π stacking or self-locked intramolecular interactions involved in one phase state and then rearranges the molecular packing to form another well-ordered aromatic dipeptide crystalline structure. Such a sonication-modulated solid-solid phase transition evolution is governed by distinct molecular interactions at different stages of structural organization. The resulting crystalline nanobelts are for the first time applied for polarization imaging of cells, which can be advantageous to directly inspect the uptake and fate of nanoscale delivery platforms without labeling of fluorescent dyes. This finding provides a new perspective to comprehend the dynamic evolution of biomolecular self-organization with energy supply by an external field and open up a facile and versatile approach of using anisotropic nanostructures for polarization imaging of cells and even live organisms in future.


Assuntos
Dipeptídeos/química , Interações Hidrofóbicas e Hidrofílicas , Nanoestruturas , Transição de Fase
10.
ACS Appl Mater Interfaces ; 10(1): 602-613, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29218987

RESUMO

The present work introduces a new way to prepare Au-Pd alloy nanowire networks (NWNs) via deposition of Pd atoms onto Au nanowires in reaction media at room temperature without the aid of additional reducing agents. Thanks to their excellent colloidal stability in water as well as in ethanol, the resulting NWNs can be utilized to produce composite thin films with Nafion (perfluorinated sulfonic acid) with dimensions above dozens of square centimeters by means of solution casting on the glass substrate. Most importantly, these films can be easily transferred onto different solid substrates by lift-off technology. Moreover, the resulting Au-Pd alloy NWNs can also be easily and thoroughly loaded into macroscopic carbon fiber cloth (CFC). Both the Au-Pd alloy NWN/Nafion composite film and the Au-Pd alloy NWN-loaded CFC can be used as flexible electrodes for electrocatalysis of ethanol oxidation, with electrocatalytic performance at different distorted states superior by 2 orders of magnitude to those reported in the literature (e.g., commercial Pd/C catalysts and Pd-based nanostructured catalysts). This work opens new possibilities for the large-scale manufacturing of electrodes for fuel cells.

11.
Macromol Biosci ; 18(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29231289

RESUMO

Polyelectrolyte multilayers assembled from hyaluronic acid (HA) and poly-l-lysine (PLL) are most widely studied showing excellent reservoir characteristics to host molecules of diverse nature; however, thick (HA/PLL)n films are often found cell repellent. By a systematic study of the adhesion and proliferation of various cells as a function of bilayer number "n" a correlation with the mechanical and chemical properties of films is developed. The following cell lines have been studied: mouse 3T3 and L929 fibroblasts, human foreskin primary fibroblasts VH-Fib, human embryonic kidney HEK-293, human bone cell line U-2-OS, Chinese hamster ovary CHO-K and mouse embryonic stem cells. All cells adhere and spread well in a narrow "cell-friendly" window identify in the range of n = 12-15. At n < 12, the film is inhomogeneous and at n > 15, the film is cell repellent for all cell lines. Cellular adhesion correlates with the mechanical properties of the films showing that softer films at higher "n" number exhibiting a significant decrease of the Young's modulus below 100 kPa are weakly adherent to cells. This trend cannot be reversed even by coating a strong cell-adhesive protein fibronectin onto the film. This indicates that mechanical cues plays a major role for cell behavior, also in respect to biochemical ones.


Assuntos
Comunicação Celular , Ácido Hialurônico/química , Polilisina/química , Células 3T3 , Animais , Células CHO , Comunicação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Módulo de Elasticidade , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibronectinas/farmacologia , Células HEK293 , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/efeitos dos fármacos
13.
ACS Nano ; 11(12): 12094-12102, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29049882

RESUMO

We show that the growth of Ag nanoparticles (NPs) follows the areas of maximum plasmonic field in nanohole arrays (NAs). We thus obtain Ag NP rings not connected to the metallic rim of the nanoholes. The photocatalytic effect resulting from the enhanced E-field of NAs boosts the reaction and is responsible for the site selectivity. The strategy, using plasmonics to control a chemical reaction, can be expanded to organic reactions, for example, synthesis of polypyrrole. After the NA film is removed, ordered ring-shaped Ag NPs are easily obtained, inspiring a facile micropatterning method. Overall, the results reported in this work will contribute to the control of chemical reactions at the nanoscale and are promising to inspire a facile way to pursue patterned chemical reactions.

14.
ACS Appl Mater Interfaces ; 9(40): 35244-35252, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28925685

RESUMO

Plasmonic assemblies featuring high sensitivity that can be readily shifted by external fields are the key for sensitive and versatile sensing devices. In this paper, a novel fast-responsive plasmonic nanocomposite composed of a multilayer nanohole array and a responsive electrochromic polymer is proposed with the plasmonic mode appearance vigorously cycled upon orthogonal electrical stimuli. In this nanocomposite, the coaxially stacked plasmonic nanohole arrays can induce multiple intense Fano resonances, which result from the crosstalk between a broad surface plasmon resonance (SPR) and the designed discrete transmission peaks with ultrahigh sensitivity; the polymer wrapper could provide the sensitive nanohole array with real-time-varied surroundings of refractive indices upon electrical stimuli. Therefore, a pronounced pure electroplasmonic shift up to 72 nm is obtained, which is the largest pure electrotuning SPR range to our knowledge. The stacked nanohole arrays here are also directly used as a working electrode, and they ensure sufficient contact between the working electrode (plasmonic structure) and the electroactive polymer, thus providing considerably improved response speed (within 1 s) for real-time sensing and switching.

17.
Langmuir ; 33(38): 9873-9879, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28846431

RESUMO

Separation of rare earth compounds from water into an organic phase in practical cases requires the use of specific ion binding ligands in high concentrations. These tend to form complex liquid crystalline phases preferentially at ion-rich locations inside a pertraction membrane. They form a blocking layer above an ion concentration threshold, which is experimentally characterized. It is shown to limit the flux through the membrane, which is studied for the application of rare earth recycling, an example being the phase transfer of Nd from water into organic phase. This feedback leads to a stationary membrane permeation rate that can be modeled without any free parameters in very good agreement with experiment. The ion-specific formation and dissolution of the blocking layer, a feature found also in nature, and its control suggest further studies to enhance permeation as well as its selectivity control.

18.
Biomacromolecules ; 18(11): 3514-3523, 2017 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-28721731

RESUMO

Self-assembled peptide hydrogels are particularly appealing for drug delivery, tissue engineering, and antitumor therapy due to various advantageous features including excellent biocompatibility and biodegradability, defined molecular and higher organized structures, and easy availability. However, the poor mechanical and rheological properties of assembled peptide hydrogels cause difficulties in injection, thus limiting further applications. Herein, injectable peptide-based hydrogels with tunable mechanical and rheological properties were obtained by combination with a positively charged poly peptide (poly-l-lysine, PLL). Electrostatic coupling between PLL and a self-assembling dipeptide (Fmoc-FF) provides a smart switch to enable the fibrous hydrogels to be shear-thinning and self-healing, thus leading to the formation of supramolecular hydrogels with rheological properties suitable for injection. The latter can be flexibly adjusted by merely varying the concentration or the molecular weight of the polypeptide to satisfy a variety of requirements in biological applications. The hydrogels, consisting of helical nanofibers stabilized with disulfide bonds, are prepared and further injected for antitumor therapy. The results demonstrate that the helical fibrous hydrogel, without the addition of antigens, immune regulatory factors, and adjuvants, can activate T cell response and efficiently suppress tumor growth. Therefore, injectable hydrogels self-assembled by a combination of small peptides and biomacromolecules present a great potential for biomedical applications, especially for development of a new type of immuno-responsive materials toward antitumor therapy.


Assuntos
Dipeptídeos/imunologia , Hidrogéis/uso terapêutico , Imunidade Celular/imunologia , Neoplasias/terapia , Proliferação de Células/efeitos dos fármacos , Dipeptídeos/química , Sistemas de Liberação de Medicamentos , Humanos , Imunidade Celular/efeitos dos fármacos , Nanofibras/química , Nanofibras/uso terapêutico , Neoplasias/imunologia , Linfócitos T/efeitos dos fármacos
19.
ACS Appl Mater Interfaces ; 9(22): 18474-18481, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28541041

RESUMO

ZnO@polymer core-shell nanoparticles are assembled into novel capsule shells with diameters of about 100 nm to load isotretinoin (ISO) with a capacity as high as 34.6 wt %. Although ISO, a widely used drug for acne treatment, by itself is not suitable for treating cancer because of its hydrophobicity, our ZnO-ISO composite showed much stronger anticancer activity. The improved cytotoxicity is ascribed to the synergistic effects of the ZnO@polymer and ISO, where the ZnO@polymer helps in the accumulation of ISO in cancer cells on the one hand, and on the other hand, ISO is released completely through ZnO decomposition under acidic conditions of cancer cells. Such a pH-triggered drug-delivery system exhibits a much improved killing of cancer cells in vitro in comparison with the benchmarks, Nintedanib and Crizotinib, two commercial drugs clinically applied against lung cancer.


Assuntos
Nanopartículas Metálicas , Cápsulas , Sistemas de Liberação de Medicamentos , Isotretinoína , Óxido de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...