Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 33(4): 393-5, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18278121

RESUMO

We demonstrate and analyze data modulation of terahertz (THz) signals in the 1 Mbit/s range. THz pulse trains are phase and amplitude encoded with pseudorandom binary data, transmitted over a short distance, and detected. Different modulation formats are generated. Bit error measurements characterize the communication channel. We estimate from experimental results the maximum data rates for an optimized system.

2.
Opt Lett ; 28(23): 2303-5, 2003 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-14680163

RESUMO

Interchannel cross-phase-modulation-induced polarization scattering (XPMIPS) and its effect on the performance of optical polarization mode dispersion (PMD) compensation in wavelength-division-multiplexed (WDM) systems are studied. The level of XPMIPS in long-haul WDM transmission systems is theoretically quantified, and its effect on optical PMD compensation is evaluated with numerical simulations. We show that in 10-Gbit/s ultra-long-haul dense WDM systems XPMIPS could reduce the PMD compensation efficiency by 50%, whereas for 40-Gbit/s systems the effect of XPMIPS is smaller.

3.
Opt Lett ; 28(24): 2461-3, 2003 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-14690115

RESUMO

Nonlinear polarization rotation between a pump and a probe signal in a highly nonlinear fiber is used as a modulation process to generate 80-Gbit/s return-to-zero differential phase-shift keying signals. Its performance is analyzed and compared with a conventional on-off keying modulated signal.

4.
Appl Opt ; 42(27): 5407-12, 2003 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-14526827

RESUMO

We describe the design, fabrication, and performance of a high-speed, continuously tunable, and reset-free polarization controller based on nematic liquid-crystal (NLC) microcell wave plates fabricated directly between the tips of optical fibers. This controller utilizes a pulsed driving scheme and optimized NLC materials to achieve a stepwise switching speed of 1 deg/micros, for arbitrary rotation angles with moderately low voltages. This compact microcell design requires no bulk optical components and has the potential to have low insertion loss. We describe the performance of these devices when implemented in polarization mode dispersion compensators for 40 Gbit/s systems. The good optical properties and the nonmechanical, high-speed, and low-power operation suggest that this type of device might be considered for some applications in dynamic compensation of polarization mode dispersion, polarization analysis, polarization division demultiplexing, and polarization scrambling in high-speed optical communication systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...