Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 49(12): 3460-3463, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875645

RESUMO

Indium tin oxide (ITO) nanocrystals 1-10 nm in size were grown via thermal treatment of a boroaluminosilicate parent glass. The nonlinear behavior of the obtained glass-ceramic was investigated with the Z-scan technique using 550 ps pulses of a 532 nm source at a 500 Hz repetition rate. The nonlinear response was rich, with the sample exhibiting third- and fifth-order nonlinearities as well as saturable absorption and two-photon absorption (TPA), depending on the locale probed. Photoinduced changes were also observed, with high intensity exposures yielding an increased magnitude of the response when lower power trials were subsequently repeated at the same sample position. The work demonstrates that ITO nanocrystal precipitation in bulk glass yields effective nonlinear response and suggests that with further development may enable more compact devices exploiting ITO and the need for particle deposition routes.

2.
NPJ Microgravity ; 10(1): 26, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448495

RESUMO

The relationships between materials processing and structure can vary between terrestrial and reduced gravity environments. As one case study, we compare the nonequilibrium melt processing of a rare-earth titanate, nominally 83TiO2-17Nd2O3, and the structure of its glassy and crystalline products. Density and thermal expansion for the liquid, supercooled liquid, and glass are measured over 300-1850 °C using the Electrostatic Levitation Furnace (ELF) in microgravity, and two replicate density measurements were reproducible to within 0.4%. Cooling rates in ELF are 40-110 °C s-1 lower than those in a terrestrial aerodynamic levitator due to the absence of forced convection. X-ray/neutron total scattering and Raman spectroscopy indicate that glasses processed on Earth and in microgravity exhibit similar atomic structures, with only subtle differences that are consistent with compositional variations of ~2 mol. % Nd2O3. The glass atomic network contains a mixture of corner- and edge-sharing Ti-O polyhedra, and the fraction of edge-sharing arrangements decreases with increasing Nd2O3 content. X-ray tomography and electron microscopy of crystalline products reveal substantial differences in microstructure, grain size, and crystalline phases, which arise from differences in the melt processes.

3.
Phys Chem Chem Phys ; 25(8): 5967-5988, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36752128

RESUMO

The short-range order of binary zinc borate glasses, xZnO-(1-x)B2O3, has been quantitatively described as a function of ZnO content over the entire glass forming range for the first time, to the best of our knowledge. Multiple spectroscopic techniques (11B NMR, Raman, infrared) reveal detailed structural information regarding borate speciation and network connectivity, and a new model for quantifying the molar fractions of short-range order units is proposed. A consistent thermal history dependence for the fraction of tetrahedral boron (N4) is well accounted for by the proposed model. The model predicts density within 0.1% of experimental values and N4 to within 1% of NMR values. The intermediate character of four-coordinated zinc in borate glasses of this series is evident by the far infrared profiles and the glass transition temperature behavior, which decreases non-monotonically with increasing ZnO content.

4.
Phys Chem Chem Phys ; 22(17): 9543-9560, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32319995

RESUMO

Inspired by the work of John Duffy on optical basicity of oxyfluoride glasses, we apply here the concept of optical basicity to oxynitride systems. While in the original work of Duffy and Ingram the basicity of a medium could be probed by s2 ions like Pb2+, the low energy intrinsic absorption edge of nitride-containing systems does not allow the use of such probe ions. This study uses therefore experimental data on refractive index and density of alkaline earth and rare earth containing silicate oxynitride glasses, prepared by the authors or taken from the literature. In addition, literature reports on experimental or calculated refractive index, density and polarizability data are used to compare pure nitride systems, e.g. bulk or thin film materials that are either crystalline or glassy. We compare simple and complex nitride systems with their oxygen counterparts, by calculating their optical basicity using the chemical composition as well as the established relationship between optical basicity, Λ, and electronic polarizability in oxide systems. Our results on oxynitride systems are in good agreement with Duffy's previous work on oxyfluoride glasses and indicate that the optical basicity varies for the isoelectronic anions in nitrides, oxides and fluorides (N3-:O2-:F-) of a cation Mm+ as follows: Λ(MFm) = 1/2Λ(M2Om) = 1/3Λ(M3Nm). Using this relation for CaO, for which the optical basicity was set as unity by Duffy and Ingram, one has Λ(CaF2) = 0.50, Λ(CaO) = 1.00 and Λ(Ca3N2) = 1.50. The optical basicity of complex nitrides can therefore be calculated by the same method established for oxides using the equivalent fractions and the basicity of the constituent nitrides. The relationship between nitride polarizability αN and basicity Λ(nitride) was found to be linear, with Λ(nitride) = 0.39αN- 0.14 where αN is given in Å3.

5.
Sci Rep ; 7(1): 17618, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29247213

RESUMO

In many daily applications glasses are indispensable and novel applications demanding improved strength and crack resistance are appearing continuously. Up to now, the fundamental mechanical processes in glasses subjected to high strain rates at room temperature are largely unknown and thus guidelines for one of the major failure conditions of glass components are non-existent. Here, we elucidate this important regime for the first time using glasses ranging from a dense metallic glass to open fused silica by impact as well as quasi-static nanoindentation. We show that towards high strain rates, shear deformation becomes the dominant mechanism in all glasses accompanied by Non-Newtonian behaviour evident in a drop of viscosity with increasing rate covering eight orders of magnitude. All glasses converge to the same limit stress determined by the theoretical hardness, thus giving the first experimental and quantitative evidence that Non-Newtonian shear flow occurs at the theoretical strength at room temperature.

6.
J Phys Chem B ; 119(7): 3259-72, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25601494

RESUMO

The structure and properties of melt-quenched glasses and partially crystallized samples from the borate series (1-2x)Eu2O3-x((Eu,Sr)O-B2O3) were investigated in the supermodified regime of x < 0.5, using Raman, infrared (IR), electron spin resonance (ESR), and UV-vis absorption and fluorescence spectroscopic techniques. ESR and optical spectroscopy showed that, despite the strongly reducing synthesis conditions, the Eu(2+)/Eu(3+) equilibrium remained shifted to the side of trivalent Eu(3+). Stable and transparent overmodified borate glasses were produced for compositions with x ≥ 0.36. Higher europium oxide concentrations resulted in precipitation of crystalline Eu2Sr3(BO3)4 and EuBO3 phases, as traced by X-ray diffraction. Raman and IR spectroscopy showed that the metaborate configuration which is present at x = 0.46 transforms gradually, with increasing Eu2O3 levels, into orthoborate [BO3](3-) triangular units. At higher europium oxide content (x ≤ 0.36), the presence of Eu(3+) supports the formation of orthoborate [BØ2O2](3-) tetrahedral species. These units organize into [B3O9](9-) rings, which exist in equilibrium with [BO3](3-) triangles. As a consequence, distinct variations can be observed also in the macroscopic properties such as density, glass transition temperature, refractive index, optical basicity, and oxygen polarizability. This observation confirms previous findings on manganese-strontium borates with high modification levels.

7.
J Chem Phys ; 141(22): 224509, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25494762

RESUMO

Ionic sulfophosphate liquids of the type ZnO-Na2O-Na2SO4-P2O5 exhibit surprising glass forming ability, even at slow or moderate cooling rate. As a concept, they also provide high solubility of transition metal ions which could act as cross-linking sites between the sulfate and phosphate entities. It is therefore investigated how the replacement of ZnO by MnO and/or FeO affects the glass structure and the glass properties. Increasing manganese levels are found to result in a monotonic increase of the transition temperature Tg and most of the mechanical properties. This trend is attributed to the change of metal-ion coordination from four-fold around Zn(2+) to six-fold around Mn(2+) ions. The higher coordination facilitates cross-linking of the ionic structural entities and subsequently increases Tg. Raman and infrared spectroscopy show that the structure of these glasses involves only SO4(2-) and PO4 (3-) monomers as well as P2O7(4-) dimers. Replacement of ZnO by MnO is found to favour PO4(3-) over P2O7(4-) species, a trend which is enhanced by co-doping with FeO. Both transition metal ions show, like Zn(2+), a preference to selectively coordinate to phosphate anionic species, as opposed to sodium ions which coordinate mainly to sulfate anions. EPR spectroscopy finally shows that divalent Mn(2+) ions are present primarily in MnO6-clusters, which, in the studied sulfophosphate glasses, convert upon increasing MnO content from corner-sharing to edge-sharing entities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...