Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(26): 12255-12267, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38898818

RESUMO

Bioinspired tungsten acetylene complexes containing pyridine-2-selenolato (PySe) or 6-methyl-pyridine-2-selenolato (6-MePySe) ligands were synthesized. 77Se NMR spectroscopy allowed for an assessment of the resonance structures in the pyridine-2-selenolato ligands and the rationalization of chemoselectivity observed in regard to 1,2 migratory insertion of HC≡CH. [W(CO)(C2H2)(CHCH-PySe)(PySe)] is formed exclusively via insertion of HC≡CH into the W-N bond, while the use of bulkier 6-MePySe allows for the isolation of [W(CO)(C2H2)(6-MePySe)2], which only partially reacts with excess HC≡CH to give [W(CO)(C2H2)(CHCH-6-MePySe)(6-MePySe)]. Oxidation of [W(CO)(C2H2)(6-MePySe)2] with pyridine-N-oxide gave the tungsten(IV) complex [WO(C2H2)(6-MePySe)2]. Complexes [W(CO)(C2H2)(6-MePySe)2] and [WO(C2H2)(6-MePySe)2] react with trimethyl phosphine to carbyne complex [W(CO)(CCH2PMe3)(PMe3)2(6-MePySe)]Cl and alkylidene complex [WO(CHCHPMe3)(PMe3)2(6-MePySe)]Cl, respectively. The addition of substituted alkynes to [W(CO)3(PySe)2] via thermal decarbonylation gave complexes [W(CO)(MeC≡CMe)(PySe)2] and [W(CO)(HC≡Ct-Bu)(PySe)2], respectively. The here presented complexes are relevant for the modeling of the active site of acetylene hydratase from Pelobacter acetylenicus, in which a tungsten atom is enclosed in a sulfur-rich coordination sphere. A recently published theoretical study concluded that the exchange of sulfur for selenium would increase the activity of the enzyme. Our findings contrast this claim as comparative analysis concludes negligible structural and electronic differences between the selenium-based and previously published sulfur-based complexes.

2.
Inorg Chem ; 63(26): 11953-11962, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38877603

RESUMO

Inspired by the first shell mechanism proposed for the tungstoenzyme acetylene hydratase, the electrophilic reactivity of tungsten-acetylene complexes [W(CO)(C2H2)(6-MePyS)2] (1) and [WO(C2H2)(6-MePyS)2] (2) was investigated. The biological nucleophile water/hydroxide and tert-butyl isocyanide were employed. Our findings consistently show that, regardless of the nucleophile used, both tungsten centers W(II) and W(IV), respectively, are the preferred targets over the coordinated acetylene. Treatment of 2 with aqueous NaOH led to protonation of coordinated acetylene to ethylene, pointing toward the Brønsted basic character of the coordinated alkyne instead of the anticipated electrophilic behavior. In cases involving isocyanides as nucleophiles, the attack on the W(II) center of 1 took place first, whereas the W(IV) complex 2 remained unchanged. These experiments indicate that the direct nucleophilic attack of W-coordinated acetylene by water, as some computational studies of acetylene hydratase propose, is unlikely to occur.

3.
Chem Commun (Camb) ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832417

RESUMO

Inspired by the enzyme acetylene hydratase, we investigated the reactivity of acetylene with tungsten(II) pyrazole complexes. Our research revealed that the complex [WBr2(pz-NHCCH3)(CO)3] (pz = 3,5-dimethyl-pyrazolate) facilitates the stochiometric reaction between pzH and acetylene to give N-vinyl-pz. This vinyl compound readily hydrolyzes to acetaldehyde, mirroring the product of acetylene hydration in the enzymatic process. The formation of the vinyl compound likely involves a reactive intermediate complex where acetylene acts as a two-electron donor, in contrast to isolable acetylene complexes that are inert to nucleophilic attack by water. Results suggest an alternative mechanism for the enzyme, including vinylation of a neighboring amino acid by acetylene in the active site prior to hydration.

4.
Polymers (Basel) ; 16(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38611225

RESUMO

Poly(phenylene methylene) (PPM) is a multifunctional polymer that is also active as an anticorrosion fluorescent coating material. Although this polymer was synthesized already more than 100 years ago, a versatile synthetic route to obtain soluble high molar mass polymers based on PPM has yet to be achieved. In this article, the influence of bifunctional bis-chloromethyl durene (BCMD) as a branching agent in the synthesis of PPM is reported. The progress of the reaction was followed by gel permeation chromatography (GPC) and NMR analysis. PPM-based copolymers with the highest molar mass reported so far for this class of materials (up to Mn of 205,300 g mol-1) were isolated. The versatile approach of using BCMD was confirmed by employing different catalysts. Interestingly, thermal and optical characterization established that the branching process does not affect the thermoplastic behavior and the fluorescence of the material, thus opening up PPM-based compounds with high molar mass for applications.

5.
Inorg Chem ; 62(14): 5669-5676, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36989414

RESUMO

An increasing number of discovered tungstoenzymes raises interest in the biomimetic chemistry of tungsten complexes in oxidation states +IV, +V, and +VI. Bioinspired (sulfur-rich) tungsten(VI) dioxido complexes are relatively prevalent in literature. Still, their energetically demanding reduction directly correlates with a small number of known tungsten(IV) oxido complexes, whose chemistry is not well explored. In this paper, a reduction of the [WO2(6-MePyS)2] (6-MePyS = 6-methylpyridine-2-thiolate) complex with PMe3 to a phosphine-stabilized tungsten(IV) oxido complex [WO(6-MePyS)2(PMe3)2] is described. This tungsten(IV) complex partially releases one PMe3 ligand in solution, creating a vacant coordination site capable of activating dioxygen to form [WO2(6-MePyS)2] and OPMe3. Therefore, [WO2(6-MePyS)2] can be used as a catalyst for the aerobic oxidation of PMe3, rendering this complex a rare example of a tungsten system utilizing dioxygen in homogeneous catalysis. Additionally, the investigation of the reactivity of the tungsten(IV) oxido complex with acetylene, substrate of a tungstoenzyme acetylene hydratase (AH), revealed the formation of the tungsten(IV) acetylene adduct. Although this adduct was previously reported as an oxidation product of the tungsten(II) acetylene carbonyl complex, here it is obtained via substitution at the sulfur-rich tungsten(IV) center, mimicking the initial step of the first shell mechanism for AH as suggested by computational studies.

6.
Dalton Trans ; 51(29): 11086-11097, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35796232

RESUMO

Multinuclear tungsten complexes are intriguing candidates for new contrast media that can provide substantial improvements in CT imaging diagnostics. Herein, we present a ligand strategy, based on amino acids, and mono- and disubstituted EDTA derivatives, that enables the development of stable complexes with high tungsten content and reasonably low osmolality. Accordingly, a series of neutral and monoanionic di-µ-sulfido W(V) dimers have been synthesized via a convenient procedure utilizing microwave heating in combination with ion-pair HPLC reaction monitoring. The compounds were characterized in detail by various techniques, including ESI-HRMS, NMR spectroscopy, HPLC, elemental analysis, and X-ray crystallography. The aqueous stability of the complexes under physiologically relevant conditions, and during heat sterilization was also examined as an initial assessment of their potential applicability as radiocontrast agents. Monoanionic complexes featuring monosubstituted EDTA derivatives have demonstrated high stability, while producing a lower number of ions in solution (resulting in lower osmolality) in comparison to their bis-anionic EDTA counterparts. Nevertheless, they exhibited insufficient water solubility for application as intravascular contrast agents. However, our study showed that aqueous solubility of this type of complexes can be tuned by small modifications in the ligand structure.


Assuntos
Meios de Contraste , Tungstênio , Meios de Contraste/química , Cristalografia por Raios X , Ácido Edético , Ligantes , Modelos Moleculares , Polímeros , Enxofre , Tomografia Computadorizada por Raios X , Tungstênio/química , Água/química
7.
Chemistry ; 28(55): e202201867, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35775999

RESUMO

Molybdenum(VI) bis(imido) complexes [Mo(NtBu)2 (LR )2 ] (R=H 1 a; R=CF3 1 b) combined with B(C6 F5 )3 (1 a/B(C6 F5 )3 , 1 b/B(C6 F5 )3 ) exhibit a frustrated Lewis pair (FLP) character that can heterolytically split H-H, Si-H and O-H bonds. Cleavage of H2 and Et3 SiH affords ion pairs [Mo(NtBu)(NHtBu)(LR )2 ][HB(C6 F5 )3 ] (R=H 2 a; R=CF3 2 b) composed of a Mo(VI) amido imido cation and a hydridoborate anion, while reaction with H2 O leads to [Mo(NtBu)(NHtBu)(LR )2 ][(HO)B(C6 F5 )3 ] (R=H 3 a; R=CF3 3 b). Ion pairs 2 a and 2 b are catalysts for the hydrosilylation of aldehydes with triethylsilane, with 2 b being more active than 2 a. Mechanistic elucidation revealed insertion of the aldehyde into the B-H bond of [HB(C6 F5 )3 ]- . We were able to isolate and fully characterize, including by single-crystal X-ray diffraction analysis, the inserted products Mo(NtBu)(NHtBu)(LR )2 ][{PhCH2 O}B(C6 F5 )3 ] (R=H 4 a; R=CF3 4 b). Catalysis occurs at [HB(C6 F5 )3 ]- while [Mo(NtBu)(NHtBu)(LR )2 ]+ (R=H or CF3 ) act as the cationic counterions. However, the striking difference in reactivity gives ample evidence that molybdenum cations behave as weakly coordinating cations (WCC).

8.
Inorg Chem ; 61(31): 12415-12424, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35894844

RESUMO

Upon replacement of molybdenum by tungsten in DMSO reductase isolated from the Rhodobacteraceae family, the derived enzyme catalyzes DMSO reduction faster. To better understand this behavior, we synthesized two tungsten(VI) dioxido complexes [WVIO2L2] with pyridine- (PyS) and pyrimidine-2-thiolate (PymS) ligands, isostructural to analogous molybdenum complexes we reported recently. Higher oxygen atom transfer (OAT) catalytic activity was observed with [WO2(PyS)2] compared to the Mo species, independent of whether PMe3 or PPh3 was used as the oxygen acceptor. [WVIO2L2] complexes undergo reduction with an excess of PMe3, yielding the tungsten(IV) oxido species [WOL2(PMe3)2], while with PPh3, no reactions are observed. Although OAT reactions from DMSO to phosphines are known for tungsten complexes, [WOL2(PMe3)2] are the first fully characterized phosphine-stabilized intermediates. By following the reaction of these reduced species with excess DMSO via UV-vis spectroscopy, we observed that tungsten compounds directly react to WVIO2 complexes while the Mo analogues first form µ-oxo Mo(V) dimers [Mo2O3L4]. Density functional theory calculations confirm that the oxygen atom abstraction from WVIO2 is an endergonic process contrasting the respective reaction with molybdenum. Here, we suggest that depending on the sacrificial oxygen acceptor, the tungsten complex may participate in catalysis either via a redox reaction or as an electrophile.


Assuntos
Compostos Organometálicos , Tungstênio , Biomimética , Dimetil Sulfóxido , Molibdênio/química , Compostos Organometálicos/química , Oxigênio/química , Tungstênio/química
9.
Acta Crystallogr C Struct Chem ; 78(Pt 4): 218-222, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35380124

RESUMO

The synthesis and structural determination of two isomers of the molybdenum(II) complex (η2-but-2-yne)carbonylbis[2-(4,4-dimethyl-4,5-dihydro-1,3-oxazol-2-yl)benzenethiolato-κ2N,S]molybdenum(II), [Mo(C11H12NOS)2(C4H6)(CO)] or Mo(CO)(C2Me2)(S-Phoz)2, are presented. The N,N-cis-S,S-trans isomer 1 shows quite different bond lengths to the metal atom [Mo-N = 2.4715 (10) versus 2.3404 (11) Å; Mo-S = 2.4673 (3) versus 2.3665 (3) Å]. In the N,N-trans-S,S-cis isomer 2, which is isotypic with the corresponding W complex, the Mo-N bond lengths [2.236 (2) and 2.203 (2) Å], as well as the Mo-S bond lengths [2.5254 (8) and 2.5297 (8) Å], are almost the same.


Assuntos
Molibdênio , Cristalografia por Raios X , Ligação de Hidrogênio , Isomerismo , Ligantes , Molibdênio/química
10.
Organometallics ; 40(21): 3591-3598, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34776581

RESUMO

Intending to deepen our understanding of tungsten acetylene (C2H2) chemistry, with regard to the tungstoenzyme acetylene hydratase, here we explore the structure and reactivity of a series of tungsten acetylene complexes, stabilized with pyridine-2-thiolate ligands featuring tungsten in both +II and +IV oxidation states. By varying the substitution of the pyridine-2-thiolate moiety with respect to steric and electronic properties, we examined the details and limits of the previously reported intramolecular nucleophilic attack on acetylene followed by the formation of acetylene inserted complexes. Here, we demonstrate that only the combination of high steric demand and electron-withdrawing features prevents acetylene insertion. Nevertheless, although variable synthetic approaches are necessary for their synthesis, tungsten acetylene complexes can be stabilized predictably with a variety of pyridine-2-thiolate ligands.

11.
Organometallics ; 40(15): 2576-2583, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34393319

RESUMO

The isolation of a molybdenum(IV) acetylene (C2H2) complex containing two bioinspired 6-methylpyridine-2-thiolate ligands is reported. The synthesis can be performed either by oxidation of a molybdenum(II) C2H2 complex or by substitution of a coordinated PMe3 by C2H2 on a molybdenum(IV) center. Both C2H2 complexes were characterized by spectroscopic means as well as by single-crystal X-ray diffraction. Furthermore, the reactivity of the coordinated C2H2 was investigated with regard to acetylene hydratase, one of two enzymes that accept C2H2 as a substrate. While the reaction with water resulted in the vinylation of the pyridine-2-thiolate ligands, an intermolecular nucleophilic attack on the coordinated C2H2 with the soft nucleophile PMe3 was observed to give a cationic ethenyl complex. A comparison with the tungsten analogues revealed less tightly bound C2H2 in the molybdenum variant, which, however, shows a higher reactivity toward nucleophiles.

12.
Inorg Chem ; 60(12): 8414-8418, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33852290

RESUMO

Inspired by the proposed inner-sphere mechanism of the tungstoenzyme acetylene hydratase, we have designed tungsten acetylene complexes and investigated their reactivity. Here, we report the first intermolecular nucleophilic attack on a tungsten-bound acetylene (C2H2) in bioinspired complexes employing 6-methylpyridine-2-thiolate ligands. By using PMe3 as a nucleophile, we isolated cationic carbyne and alkenyl complexes.


Assuntos
Acetileno/química , Alcenos/síntese química , Alcinos/síntese química , Complexos de Coordenação/química , Tungstênio/química , Alcenos/química , Alcenos/isolamento & purificação , Alcinos/química , Alcinos/isolamento & purificação , Cátions/síntese química , Cátions/química , Cátions/isolamento & purificação , Ligantes , Modelos Moleculares , Estrutura Molecular
13.
Angew Chem Int Ed Engl ; 60(24): 13401-13404, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33773004

RESUMO

Reaction of [NiCl2 (PnH)4 ] (1) (PnH=6-tert-butyl-pyridazine-3-thione) with NiCl2 affords the binuclear paddlewheel (PW) complex [Ni2 (Pn)4 ] (2). Diamagnetic complex 2 is the first example of a PW complex capable of reversibly binding and releasing NH3 . The NH3 ligand in [Ni2 (Pn)4 (NH3 )] (2⋅NH3 ) enforces major spectroscopic and magnetic susceptibility changes, thus displaying vapochromic properties (λmax (2)=532 nm, λmax (2⋅NH3 )=518 nm) and magnetochemical switching (2: S=0; 2⋅NH3 : S=1). Upon repeated adsorption/desorption cycles of NH3 the PW core remains intact. Compound 2 can be embedded into thin polyurethane films (2P ) under retention of its sensing abilities. Therefore, 2 qualifies as reversible optical probe for ammonia. The magnetochemical switching of 2 and 2⋅NH3 was studied in detail by SQUID measurements showing that in 2⋅NH3 , solely the Ni atom coordinated the NH3 molecule is responsible for the paramagnetic behavior.

14.
Adv Synth Catal ; 362(15): 3170-3182, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32982624

RESUMO

Three molybdenum(VI) dioxido complexes [MoO2(L)2] bearing Schiff base ligands were reacted with B(C6F5)3 to afford the corresponding adducts [MoO{OB(C6F5)3}(L)2], which were fully characterized. They exhibit Frustrated Lewis-Pairs reactivity when reacting with silanes. Especially, the [MoO{OB(C6F5)3}(L)2] complex with L=2,4-dimethyl-6-((phenylimino)methyl)phenol proved to be active as catalyst for the hydroalkylation of aryl alkenes with organohalides and for the Atom-Transfer Radical Addition (ATRA) of organohalides to aliphatic alkenes. A series of gem-dichloride and gem-dibromide compounds with potential for further derivatization were synthesized from simple alkenes and organohalides, like chloroform or bromoform, using low catalyst loading.

15.
Inorg Chem ; 59(19): 14577-14593, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32951421

RESUMO

Four dioxidomolybdenum(VI) complexes of the general structure [MoO2L2] employing the S,N-bidentate ligands pyrimidine-2-thiolate (PymS, 1), pyridine-2-thiolate (PyS, 2), 4-methylpyridine-2-thiolate (4-MePyS, 3) and 6-methylpyridine-2-thiolate (6-MePyS, 4) were synthesized and characterized by spectroscopic means and single-crystal X-ray diffraction analysis (2-4). Complexes 1-4 were reacted with PPh3 and PMe3, respectively, to investigate their oxygen atom transfer (OAT) reactivity and catalytic applicability. Reduction with PPh3 leads to symmetric molybdenum(V) dimers of the general structure [Mo2O3L4] (6-9). Kinetic studies showed that the OAT from [MoO2L2] to PPh3 is 5 times faster for the PymS system than for the PyS and 4-MePyS systems. The reaction of complexes 1-3 with PMe3 gives stable molybdenum(IV) complexes of the structure [MoOL2(PMe3)2] (10-12), while reduction of [MoO2(6-MePyS)2] (4) yields [MoO(6-MePyS)2(PMe3)] (13) with only one PMe3 coordinated to the metal center. The activity of complexes 1-4 in catalytic OAT reactions involving Me2SO and Ph2SO as oxygen donors and PPh3 as an oxygen acceptor has been investigated to assess the influence of the varied ligand frameworks on the OAT reaction rates. It was found that [MoO2(PymS)2] (1) and [MoO2(6-MePyS)2] (4) are similarly efficient catalysts, while complexes 2 and 3 are only moderately active. In the catalytic oxidation of PMe3 with Me2SO, complex 4 is the only efficient catalyst. Complexes 1-4 were also found to catalytically reduce NO3- with PPh3, although their reactivity is inhibited by further reduced species such as NO, as exemplified by the formation of the nitrosyl complex [Mo(NO)(PymS)3] (14), which was identified by single-crystal X-ray diffraction analysis. Computed ΔG⧧ values for the very first step of the OAT were found to be lower for complexes 1 and 4 than for 2 and 3, explaining the difference in catalytic reactivity between the two pairs and revealing the requirement for an electron-deficient ligand system.

16.
Dalton Trans ; 49(32): 11142-11149, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32743619

RESUMO

The syntheses and characterizations of oxidorhenium(v) complexes trans-dichlorido [ReOCl2(PPh3)(L1a)] (trans-2a), cis-dichlorido [ReOCl2(PPh3)(L1b)] (cis-2b) and ethoxido-complex [ReO(OEt)(L1b)2] (4b), ligated with the dimethyloxazoline-phenol ligands HL1a and HL1b are described. The bidentate ligand HL1a (2-(4,4-dimethyl-4,5-dihydro-1,3-oxazol-2-yl)-phenol) is unsubstituted on the phenol ring; ligand HL1b (2-(4,4-dimethyl-4,5-dihydro-1,3-oxazol-2-yl)-4-nitrophenol) contains a nitro group in para-position to the hydroxy group. In the reaction of precursor complex [ReOCl3(PPh3)2] and HL1a the two stereoisomers cis/trans-2a, with respect to chlorido ligands, are formed. The solid state structures of both isomers cis- and trans-2a were determined by single crystal X-ray diffraction analysis. In contrast, with ligand HL1b, only the cis-isomer cis-2b was obtained. Ethoxido-complex 4b is exclusively obtained when precursor [ReOCl3(OPPh3)(SMe2)] is reacted with 2 equiv. of HL1b in ethanol in the presence of the base 2,6-dimethylpyridine (lutidine). If no lutidine is added, chlorido-complex [ReOCl(L1b)2] (3b) is obtained. Complexes [ReOCl2(PPh3)(L1a)] (cis/trans-2a), [ReOCl2(PPh3)(L1b)] (cis-2b), [ReO(OMe)(L1a)2] (4a) and [ReO(OEt)(L1b)2] (4b) were tested as homogeneous catalysts in the benchmark reaction of cyclooctene epoxidation. The influence of isomerism and effects of ligand substitutions on catalytic activity was investigated. Based on the time-conversion plots it can be concluded that cis/trans-isomerism does not influence catalytic activity, but electron-withdrawing substituents, as in cis-2b, 3b and 4b, show a beneficial effect.

17.
Chemistry ; 26(54): 12431-12444, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32640122

RESUMO

A series of WIV alkyne complexes with the sulfur-rich ligand hydridotris(2-mercapto-1-methylimidazolyl) borate) (TmMe ) are presented as bio-inspired models to elucidate the mechanism of the tungstoenzyme acetylene hydratase (AH). The mono- and/or bis-alkyne precursors were reacted with NaTmMe and the resulting complexes [W(CO)(C2 R2 )(TmMe )Br] (R=H 1, Me 2) oxidized to the target [WE(C2 R2 )(TmMe )Br] (E=O, R=H 4, Me 5; E=S, R=H 6, Me 7) using pyridine-N-oxide and methylthiirane. Halide abstraction with TlOTf in MeCN gave the cationic complexes [WE(C2 R2 )(MeCN)(TmMe )](OTf) (E=CO, R=H 10, Me 11; E=O, R=H 12, Me 13; E=S, R=H 14, Me 15). Without MeCN, dinuclear complexes [W2 O(µ-O)(C2 Me2 )2 (TmMe )2 ](OTf)2 (8) and [W2 (µ-S)2 (C2 Me2 )(TmMe )2 ](OTf)2 (9) could be isolated showing distinct differences between the oxido and sulfido system with the latter exhibiting only one molecule of C2 Me2 . This provides evidence that a fine balance of the softness at W is important for acetylene coordination. Upon dissolving complex 8 in acetonitrile complex 13 is reconstituted in contrast to 9. All complexes exhibit the desired stability toward water and the observed effective coordination of the scorpionate ligand avoids decomposition to disulfide, an often-occurring reaction in sulfur ligand chemistry. Hence, the data presented here point toward a mechanism with a direct coordination of acetylene in the active site and provide the basis for further model chemistry for acetylene hydratase.


Assuntos
Boratos , Complexos de Coordenação/química , Hidroliases/química , Tungstênio , Ligantes
18.
IUCrdata ; 5(Pt 11): x201465, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36340016

RESUMO

The structure of the title hydrated mol-ecular salt, C10H8NS+·Cl-·H2O, obtained by the reaction of sodium quinoline-8-thiolate Na(Quin-8-S) with CH2Cl2 and an aqueous solution of [Bu4N]Cl, contains π-stacked cations [plane-to-plane separation = 3.338 (4)-3.356 (4) Å] and features chains built by alternating Cl- anions and H2O mol-ecules connected by O-H⋯O hydrogen bonds. The cation shows whole-mol-ecule disorder over two flipped orientations in a 0.853 (3):0.147 (3) ratio.

19.
Chemistry ; 25(63): 14267-14272, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31603595

RESUMO

Bioinspired complexes employing the ligands 6-tert-butylpyridazine-3-thione (SPn) and pyridine-2-thione (SPy) were synthesized and fully characterized to mimic the tungstoenzyme acetylene hydratase (AH). The complexes [W(CO)(C2 H2 )(CHCH-SPy)(SPy)] (4) and [W(CO)(C2 H2 )(CHCH-SPn)(SPn)] (5) were formed by intramolecular nucleophilic attack of the nitrogen donors of the ligand on the coordinated C2 H2 molecule. Labelling experiments using C2 D2 with the SPy system revealed the insertion reaction proceeding via a bis-acetylene intermediate. The starting complex [W(CO)(C2 H2 )(SPy)2 ] (6) for these studies was accessed by the new acetylene precursor mixture [W(CO)(C2 H2 )n (MeCN)3-n Br2 ] (n=1 and 2; 7). All complexes represent rare examples in the field of W-C2 H2 chemistry with 4 and 5 being the first of their kind. In the ongoing debate on the enzymatic mechanism, the findings support activation of acetylene by the tungsten center.


Assuntos
Materiais Biomiméticos/química , Complexos de Coordenação/química , Tungstênio/química , Acetileno/química , Acetileno/metabolismo , Materiais Biomiméticos/metabolismo , Complexos de Coordenação/síntese química , Medição da Troca de Deutério , Hidroliases/química , Hidroliases/metabolismo , Espectroscopia de Ressonância Magnética , Conformação Molecular , Estereoisomerismo
20.
Dalton Trans ; 48(38): 14326-14336, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31486449

RESUMO

Bioinspired models for contrasting the electronic nature of neutral tris-histidine with the anionic 2-histidine-1-carboxylate facial motif and their subsequent impact on catalysis are reported. Herewith, iron(ii) complexes [Fe(L)(CH3CN)3](SO3CF3)21-3 of tris(2-pyridyl)-based ligands (L) have been synthesized and characterized as accurate structural models for the neutral 3-histidine triad of the enzyme diketone dioxygenase (DKDO). The molecular structure of one of the complexes exhibits octahedral coordination geometry and Fe-N11py bond lengths [1.952(4) to 1.959(4) Å] close to the Fe-NHis bond distances (1.98 Å) of the 3-His triad in the resting state of the enzyme, as obtained by EXAFS studies. The diketonate substrate-adduct complexes [Fe(L)(acacR)](SO3CF3) (R = Me, Ph) of 1-3 have been obtained using Na(acacR) in acetonitrile. The Fe2+/3+ redox potentials of the complexes (1.05 to 1.2 V vs. Fc/Fc+) and their substrate adducts (1.02 to 1.19 V vs. Fc/Fc+) appeared at almost the same redox barrier. All diketonate adducts exhibit two Fe(ii) → acac MLCT bands around 338 to 348 and 430 to 490 nm. Exposure of these adducts to O2 results in the decay of both MLCT bands with a rate of (kO2) 5.37 to 9.41 × 10-3 M-1 s-1. The kO2 values were concomitantly accelerated 20 to 50 fold by the addition of H+ (acetic acid), which nicely models the rate enhancement in the enzyme kinetics by the glutamate residue (Glu98). The oxygenation of the phenyl-substituted adducts yielded benzoin and benzoic acid (40% to 71%) as cleavage products in the presence of H+ ions. Isotope-labeling experiments using 18O2 showed 47% incorporation of 18O in benzoic acid, which reveals that the oxygen originates from dioxygen. Thus, the present model complexes exhibit very similar chemical surroundings to the active site of DKDO and mimic its functions elegantly. On the basis of these results, the C-C bond cleavage reaction mechanism is discussed.


Assuntos
Dioxigenases/metabolismo , Compostos Ferrosos/metabolismo , Histidina/metabolismo , Cetonas/metabolismo , Modelos Biológicos , Dioxigenases/química , Compostos Ferrosos/síntese química , Compostos Ferrosos/química , Histidina/química , Cetonas/química , Cinética , Ligantes , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...