Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Mol Neurobiol ; 58(9): 4477-4486, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34033061

RESUMO

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of human COVID-19, not only causes flu-like symptoms and gut microbiome complications but a large number of infected individuals also experience a host of neurological symptoms including loss of smell and taste, seizures, difficulty concentrating, decreased alertness, and brain inflammation. Although SARS-CoV-2 infections are not more prevalent in Parkinson's disease patients, a higher mortality rate has been reported not only associated with older age and longer disease duration, but also through several mechanisms, such as interactions with the brain dopaminergic system and through systemic inflammatory responses. Indeed, a number of the neurological symptoms seen in COVID-19 patients, as well as the alterations in the gut microbiome, are also prevalent in patients with Parkinson's disease. Furthermore, biochemical pathways such as oxidative stress, inflammation, and protein aggregation have shared commonalities between Parkinson's disease and COVID-19 disease progression. In this review, we describe and compare the numerous similarities and intersections between neurodegeneration in Parkinson's disease and RNA viral infections, emphasizing the current SARS-CoV-2 global health crisis.


Assuntos
COVID-19/fisiopatologia , Microbioma Gastrointestinal , Doença de Parkinson/fisiopatologia , SARS-CoV-2 , Idoso , COVID-19/complicações , COVID-19/mortalidade , Transtornos Cognitivos/etiologia , Citocinas/fisiologia , Dieta , Progressão da Doença , Disbiose/etiologia , Disbiose/fisiopatologia , Humanos , Inflamação , Metais Pesados/toxicidade , Modelos Neurológicos , Degeneração Neural , Bulbo Olfatório/fisiopatologia , Bulbo Olfatório/virologia , Estresse Oxidativo , Doença de Parkinson/etiologia , Guias de Prática Clínica como Assunto , Agregação Patológica de Proteínas/etiologia , Infecções por Vírus de RNA/metabolismo , Infecções por Vírus de RNA/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo , Transtornos de Sensação/etiologia , alfa-Sinucleína/metabolismo
2.
J Otol ; 14(3): 77-88, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31467504

RESUMO

The utilization of biomarkers for in vivo and in vitro research is growing rapidly. This is mainly due to the enormous potential of biomarkers in evaluating molecular and cellular abnormalities in cell models and in tissue, and evaluating drug responses and the effectiveness of therapeutic intervention strategies. An important way to analyze the development of the human body is to assess molecular markers in embryonic specialized cells, which include the ectoderm, mesoderm, and endoderm. Neuronal development is controlled through the gene networks in the neural crest and neural tube, both components of the ectoderm. The neural crest differentiates into several different tissues including, but not limited to, the peripheral nervous system, enteric nervous system, melanocyte, and the dental pulp. The neural tube eventually converts to the central nervous system. This review provides an overview of the differentiation of the ectoderm to a fully functioning nervous system, focusing on molecular biomarkers that emerge at each stage of the cellular specialization from multipotent stem cells to completely differentiated cells. Particularly, the otic placode is the origin of most of the inner ear cell types such as neurons, sensory hair cells, and supporting cells. During the development, different auditory cell types can be distinguished by the expression of the neurogenin differentiation factor1 (Neuro D1), Brn3a, and transcription factor GATA3. However, the mature auditory neurons express other markers including ßIII tubulin, the vesicular glutamate transporter (VGLUT1), the tyrosine receptor kinase B and C (Trk B, C), BDNF, neurotrophin 3 (NT3), Calretinin, etc.

3.
Parkinsonism Relat Disord ; 64: 202-210, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31003905

RESUMO

INTRODUCTION: As current clinical diagnostic protocols for Parkinson's disease (PD) may be prone to inaccuracies there is a need to identify and validate molecular biomarkers, such as circulating microRNAs, which will complement current practices and increase diagnostic accuracy. This study identifies, verifies and validates combinatory serum microRNA signatures as diagnostic classifiers of PD across different patient cohorts. METHODS: 370 PD (drug naïve) and control serum samples from the Norwegian ParkWest study were used for identification and verification of differential microRNA levels in PD which were validated in a blind study using 64 NY Parkinsonism in UMeå (NYPUM) study serum samples and tested for specificity in 48 Dementia Study of Western Norway (DemWest) study Alzheimer's disease (AD) serum samples using miRNA-microarrays, and quantitative (q) RT-PCR. Proteomic approaches identified potential molecular targets for these microRNAs. RESULTS: Using Affymetrix GeneChip® miRNA 4.0 arrays and qRT-PCR we comprehensively analyzed serum microRNA levels and found that the microRNA (PARKmiR)-combinations, hsa-miR-335-5p/hsa-miR-3613-3p (95% CI, 0.87-0.94), hsa-miR-335-5p/hsa-miR-6865-3p (95% CI, 0.87-0.93), and miR-335-5p/miR-3613-3p/miR-6865-3p (95% CI, 0.87-0.94) show a high degree of discriminatory accuracy (AUC 0.9-1.0). The PARKmiR signatures were validated in an independent PD cohort (AUC ≤ 0.71) and analysis in AD serum samples showed PARKmiR signature specificity to PD. Proteomic analyses showed that the PARKmiRs regulate key PD-associated proteins, including alpha-synuclein and Leucine Rich Repeat Kinase 2. CONCLUSIONS: Our study has identified and validated unique miRNA serum signatures that represent PD classifiers, which may complement and increase the accuracy of current diagnostic protocols.


Assuntos
MicroRNAs/sangue , Doença de Parkinson/sangue , Doença de Parkinson/diagnóstico , Idoso , Doença de Alzheimer/sangue , Biomarcadores/sangue , Estudos de Coortes , Feminino , Humanos , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Noruega , Análise de Sequência de RNA , Suécia
5.
Hum Mol Genet ; 26(20): 4028-4041, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29016861

RESUMO

DJ-1 is an oxidation sensitive protein encoded by the PARK7 gene. Mutations in PARK7 are a rare cause of familial recessive Parkinson's disease (PD), but growing evidence suggests involvement of DJ-1 in idiopathic PD. The key clinical features of PD, rigidity and bradykinesia, result from neurotransmitter imbalance, particularly the catecholamines dopamine (DA) and noradrenaline. We report in human brain and human SH-SY5Y neuroblastoma cell lines that DJ-1 predominantly forms high molecular weight (HMW) complexes that included RNA metabolism proteins hnRNPA1 and PABP1 and the glycolysis enzyme GAPDH. In cell culture models the oxidation status of DJ-1 determined the specific complex composition. RNA sequencing indicated that oxidative changes to DJ-1 were concomitant with changes in mRNA transcripts mainly involved in catecholamine metabolism. Importantly, loss of DJ-1 function upon knock down (KD) or expression of the PD associated form L166P resulted in the absence of HMW DJ-1 complexes. In the KD model, the absence of DJ-1 complexes was accompanied by impairment in catecholamine homeostasis, with significant increases in intracellular DA and noraderenaline levels. These changes in catecholamines could be rescued by re-expression of DJ-1. This catecholamine imbalance may contribute to the particular vulnerability of dopaminergic and noradrenergic neurons to neurodegeneration in PARK7-related PD. Notably, oxidised DJ-1 was significantly decreased in idiopathic PD brain, suggesting altered complex function may also play a role in the more common sporadic form of the disease.


Assuntos
Catecolaminas/metabolismo , Proteína Desglicase DJ-1/genética , Proteína Desglicase DJ-1/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Encéfalo/metabolismo , Linhagem Celular Tumoral , Dopamina/metabolismo , Homeostase , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Oxirredução , Estresse Oxidativo/fisiologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo
6.
J Neurosci Res ; 94(8): 717-35, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27265751

RESUMO

Although mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common cause of genetic Parkinson's disease, their function is largely unknown. LRRK2 is pleiotropic in nature, shown to be involved in neurodegeneration and in more peripheral processes, including kidney functions, in rats and mice. Recent studies in zebrafish have shown conflicting evidence that removal of the LRRK2 WD40 domain may or may not affect dopaminergic neurons and/or locomotion. This study shows that ∼50% LRRK2 knockdown in zebrafish causes not only neuronal loss but also developmental perturbations such as axis curvature defects, ocular abnormalities, and edema in the eyes, lens, and otic vesicles. We further show that LRRK2 knockdown results in significant neuronal loss, including a reduction of dopaminergic neurons. Immunofluorescence demonstrates that endogenous LRRK2 is expressed in the lens, brain, heart, spinal cord, and kidney (pronephros), which mirror the LRRK2 morphant phenotypes observed. LRRK2 knockdown results further in the concomitant upregulation of ß-synuclein, PARK13, and SOD1 and causes ß-synuclein aggregation in the diencephalon, midbrain, hindbrain, and postoptic commissure. LRRK2 knockdown causes mislocalization of the Na(+) /K(+) ATPase protein in the pronephric ducts, suggesting that the edema might be linked to renal malfunction and that LRRK2 might be associated with pronephric duct epithelial cell differentiation. Combined, our study shows that LRRK2 has multifaceted roles in zebrafish and that zebrafish represent a complementary model to further our understanding of this central protein. © 2016 Wiley Periodicals, Inc.


Assuntos
Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doenças Neurodegenerativas/genética , Neurônios/patologia , Proteínas de Peixe-Zebra/genética , beta-Sinucleína/genética , Sequência de Aminoácidos , Animais , Química Encefálica/genética , Neurônios Dopaminérgicos , Técnicas de Silenciamento de Genes , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/biossíntese , Locomoção , Mutação/genética , Doenças Neurodegenerativas/patologia , Doença de Parkinson/genética , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/biossíntese
7.
Proc Natl Acad Sci U S A ; 113(17): E2363-72, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27071085

RESUMO

Mutations in polycystin-1 and transient receptor potential polycystin 2 (TRPP2) account for almost all clinically identified cases of autosomal dominant polycystic kidney disease (ADPKD), one of the most common human genetic diseases. TRPP2 functions as a cation channel in its homomeric complex and in the TRPP2/polycystin-1 receptor/ion channel complex. The activation mechanism of TRPP2 is unknown, which significantly limits the study of its function and regulation. Here, we generated a constitutively active gain-of-function (GOF) mutant of TRPP2 by applying a mutagenesis scan on the S4-S5 linker and the S5 transmembrane domain, and studied functional properties of the GOF TRPP2 channel. We found that extracellular divalent ions, including Ca(2+), inhibit the permeation of monovalent ions by directly blocking the TRPP2 channel pore. We also found that D643, a negatively charged amino acid in the pore, is crucial for channel permeability. By introducing single-point ADPKD pathogenic mutations into the GOF TRPP2, we showed that different mutations could have completely different effects on channel activity. The in vivo function of the GOF TRPP2 was investigated in zebrafish embryos. The results indicate that, compared with wild type (WT), GOF TRPP2 more efficiently rescued morphological abnormalities, including curly tail and cyst formation in the pronephric kidney, caused by down-regulation of endogenous TRPP2 expression. Thus, we established a GOF TRPP2 channel that can serve as a powerful tool for studying the function and regulation of TRPP2. The GOF channel may also have potential application for developing new therapeutic strategies for ADPKD.


Assuntos
Canais de Cátion TRPP/fisiologia , Amilorida/farmacologia , Animais , Cálcio/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Mutação/genética , Mutação Puntual/genética , Rim Policístico Autossômico Dominante/genética , Rutênio Vermelho/farmacologia , Canais de Cátion TRPP/efeitos dos fármacos , Canais de Cátion TRPP/genética , Peixe-Zebra/embriologia
8.
Cell Mol Life Sci ; 73(4): 811-27, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26608596

RESUMO

The last decade has experienced the emergence of microRNAs as a key molecular tool for the diagnosis and prognosis of human diseases. Although the focus has mostly been on cancer, neurodegenerative diseases present an exciting, yet less explored, platform for microRNA research. Several studies have highlighted the significance of microRNAs in neurogenesis and neurodegeneration, and pre-clinical studies have shown the potential of microRNAs as biomarkers. Despite this, no bona fide microRNAs have been identified as true diagnostic or prognostic biomarkers for neurodegenerative disease. This is mainly due to the lack of precisely defined patient cohorts and the variability within and between individual cohorts. However, the discovery that microRNAs exist as stable molecules at detectable levels in body fluids has opened up new avenues for microRNAs as potential biomarker candidates. Furthermore, technological developments in microRNA biology have contributed to the possible design of microRNA-mediated disease intervention strategies. The combination of these advancements, with the availability of well-defined longitudinal patient cohort, promises to not only assist in developing invaluable diagnostic tools for clinicians, but also to increase our overall understanding of the underlying heterogeneity of neurodegenerative diseases. In this review, we present a comprehensive overview of the existing knowledge of microRNAs in neurodegeneration and provide a perspective of the applicability of microRNAs as a basis for future therapeutic intervention strategies.


Assuntos
MicroRNAs/genética , MicroRNAs/uso terapêutico , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/terapia , Animais , Autofagia , Encéfalo/metabolismo , Encéfalo/patologia , Descoberta de Drogas , Regulação da Expressão Gênica , Marcadores Genéticos , Terapia Genética , Humanos , MicroRNAs/análise , MicroRNAs/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Transcrição Gênica
9.
PLoS One ; 10(12): e0143969, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26633009

RESUMO

MicroRNAs are key regulators associated with numerous diseases. In HEK293 cells, miR-153-3p and miR-205-5p down-regulate alpha-synuclein (SNCA) and Leucine-rich repeat kinase 2 (LRRK2), two key proteins involved in Parkinson's disease (PD). We have used two-dimensional gel electrophoresis (2D-PAGE) coupled to mass spectrometry (MS) to identify a spectrum of miR-153-3p and miR-205-5p targets in neuronal SH-SY5Y cells. We overexpressed and inhibited both microRNAs in SH-SY5Y cells and through comparative proteomics profiling we quantified ~240 protein spots from each analysis. Combined, thirty-three protein spots were identified showing significant (p-value < 0.05) changes in abundance. Modulation of miR-153-3p resulted in seven up-regulated proteins and eight down-regulated proteins. miR-205 modulation resulted in twelve up-regulated proteins and six down-regulated proteins. Several of the proteins are associated with neuronal processes, including peroxiredoxin-2 and -4, cofilin-1, prefoldin 2, alpha-enolase, human nucleoside diphosphate kinase B (Nm23) and 14-3-3 protein epsilon. Many of the differentially expressed proteins are involved in diverse pathways including metabolism, neurotrophin signaling, actin cytoskeletal regulation, HIF-1 signaling and the proteasome indicating that miR-153-3p and miR-205-5p are involved in the regulation of a wide variety of biological processes in neuroblastoma cells.


Assuntos
MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , Neuroblastoma/genética , Proteômica , Ciclo Celular , Linhagem Celular Tumoral , Eletroforese em Gel Bidimensional , Regulação Neoplásica da Expressão Gênica/genética , Humanos , MicroRNAs/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Transcrição Gênica/genética
10.
Int Rev Neurobiol ; 121: 25-58, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26315761

RESUMO

Neurodegenerative diseases are a major health concern worldwide. Diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, as well as many other diseases affecting the neuromuscular system, are a leading cause of disability in the aging population. Presymptomatic diagnosis of neurodegenerative disorders is challenging due to the lack of robust biomarkers. Likewise, the design of effective intervention strategies is limited because most neurodegenerative disorders are heterogeneous in nature. Reliable noninvasive biomarkers are therefore urgently needed to allow presymptomatic and accurate diagnosis, to track disease progression, to evaluate the effectiveness of new treatment regimens, and to ultimately design new therapeutic intervention strategies. Recent biological and technological advances within the field of proteomic promises to provide insight into global proteome changes in neurodegeneration, thus allowing increased understanding of molecular pathways leading to neuronal cell death and the identification of biomarkers. The combination of gel-based techniques and mass spectrometry permits large-scale identification of peptide sequences in biological samples as well as the characterization of posttranslational protein modifications. The application of comparative high-throughput proteomic analyses in animal models and human tissues will aid in the identification of both diagnostic and prognostic biomarkers and will provide a platform for a future personalized medicine approach in neurodegeneration.


Assuntos
Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteômica/métodos , Doenças dos Animais , Animais , Humanos
11.
Neurochem Int ; 90: 134-41, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26232623

RESUMO

Neuronal cell death, in neurodegenerative disorders, is mediated through a spectrum of biological processes. Excessive amounts of free radicals, such as reactive oxygen species (ROS), has detrimental effects on neurons leading to cell damage via peroxidation of unsaturated fatty acids in the cell membrane. Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) has been used for neurological recovery in several countries, including Japan and China, and it has been suggested that Edaravone may have cytoprotective effects in neurodegeneration. Edaravone protects nerve cells in the brain by reducing ROS and inhibiting apoptosis. To gain further insight into the cytoprotective effects of Edaravone against oxidative stress condition we have performed comparative two-dimensional gel electrophoresis (2DE)-based proteomic analyses on SH-SY5Y neuroblastoma cells exposed to oxidative stress and in combination with Edaravone. We showed that Edaravone can reverse the cytotoxic effects of H2O2 through its specific mechanism. We observed that oxidative stress changes metabolic pathways and cytoskeletal integrity. Edaravone seems to reverse the H2O2-mediated effects at both the cellular and protein level via induction of Peroxiredoxin-2.


Assuntos
Antipirina/análogos & derivados , Apoptose/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Proteoma/metabolismo , Antipirina/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Edaravone , Sequestradores de Radicais Livres/farmacologia , Humanos , Neurônios/metabolismo , Espécies Reativas de Oxigênio/metabolismo
12.
Nat Commun ; 6: 7640, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26184543

RESUMO

N-terminal acetylation (NTA) catalysed by N-terminal acetyltransferases (Nats) is among the most common protein modifications in eukaryotes, but its significance is still enigmatic. Here we characterize the plant NatA complex and reveal evolutionary conservation of NatA biochemical properties in higher eukaryotes and uncover specific and essential functions of NatA for development, biosynthetic pathways and stress responses in plants. We show that NTA decreases significantly after drought stress, and NatA abundance is rapidly downregulated by the phytohormone abscisic acid. Accordingly, transgenic downregulation of NatA induces the drought stress response and results in strikingly drought resistant plants. Thus, we propose that NTA by the NatA complex acts as a cellular surveillance mechanism during stress and that imprinting of the proteome by NatA is an important switch for the control of metabolism, development and cellular stress responses downstream of abscisic acid.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis , Secas , Regulação da Expressão Gênica de Plantas , Acetiltransferase N-Terminal A/genética , Estresse Fisiológico/genética , Acetilação , Proteínas de Arabidopsis/metabolismo , Regulação para Baixo , Escherichia coli , Células HEK293 , Humanos , Acetiltransferase N-Terminal A/metabolismo , Organismos Geneticamente Modificados , Reação em Cadeia da Polimerase em Tempo Real
13.
Exp Gerontol ; 68: 33-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25261764

RESUMO

Parkinson's disease is a chronic, progressive neurodegenerative disorder with increased prevalence in the aging population. It is estimated that approximately 1.5 million individuals in the US alone suffer from Parkinson's disease and with the extension of life expectancy this number is expected to rise dramatically within the next twenty-five years. The majority of Parkinson's disease cases are sporadic. But mutations in genes such as α-synuclein, Parkin, PINK1, DJ-1 and LRRK2, have been conclusively associated with both early- and late-onset of the disease. Although the genetics of Parkinson's disease is starting to become unraveled, the interplay between genetic and environmental factors is largely unknown as are the underlying mechanisms that trigger the disease as the brain ages. The risk of Parkinson's disease increases dramatically in individuals over the age of 60 and it is estimated that more than 1% of all seniors have some form of the condition. In this review, we will highlight some of the central proteins associated with Parkinson's disease and how they may be linked to processes and factors associated with age.


Assuntos
Envelhecimento/fisiologia , Doença de Parkinson/etiologia , Autofagia/fisiologia , Morte Celular/fisiologia , Meio Ambiente , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Transtornos de Início Tardio/etiologia , Transtornos de Início Tardio/fisiopatologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Mitofagia/fisiologia , Neurônios/fisiologia , Proteínas Oncogênicas/fisiologia , Estresse Oxidativo/fisiologia , Doença de Parkinson/fisiopatologia , Proteína Desglicase DJ-1 , Proteínas Serina-Treonina Quinases/fisiologia , alfa-Sinucleína/fisiologia
14.
Parkinsons Dis ; 2015: 973298, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26788404

RESUMO

Background. Parkinson's disease (PD) and Alzheimer's disease (AD) share pathological features, including amyloid-beta pathology. Amyloid-beta peptide is generated by sequential proteolysis of amyloid precursor protein (APP), and genetic variations in the processing pathway genes have been found to increase the risk of AD; however, the contribution in PD is unknown. Methods. The aim of this study was to investigate whether candidate polymorphisms in five genes (ADAM10, BACE1, BACE2, PSEN2, and CLU) involved in the APP processing pathway affect PD risk in a population-based cohort of patients with incident PD and control subjects from the Norwegian ParkWest study. Results. We found an association of rs638405 in BACE1 with increased risk of PD, thus providing a novel link, at the genetic level, between amyloid-beta pathology and PD.

15.
Plant J ; 80(6): 1131-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25280363

RESUMO

The widespread use of herbicides and antibiotics for selection of transgenic plants has not been very successful with regard to commercialization and public acceptance. Hence, alternative selection systems are required. In this study, we describe the use of ipt, the bacterial gene encoding the enzyme isopentenyl transferase from Agrobacterium tumefaciens, as a positive selectable marker for plastid transformation. A comparison between the traditional spectinomycin-based aadA selection system and the ipt selection system demonstrated that selection of transplastomic plants on medium lacking cytokinin was as effective as selection on medium containing spectinomycin. Proof of principle was demonstrated by transformation of the kasIII gene encoding 3-ketoacyl acyl carrier protein synthase III into tobacco plastids. Transplastomic tobacco plants were readily obtained using the ipt selection system, and were phenotypically normal despite over-expression of isopentenyl transferase. Over-expression of KASIII resulted in a significant increase in 16:0 fatty acid levels, and a significant decrease in the levels of 18:0 and 18:1 fatty acids. Our study demonstrates use of a novel positive plastid transformation system that may be used for selection of transplastomic plants without affecting the expression of transgenes within the integrated vector cassette or the resulting activity of the encoded protein. This system has the potential to be applied to monocots, which are typically not amenable to traditional antibiotic-based selection systems, and may be used in combination with a negative selectable marker as part of a two-step selection system to obtain homoplasmic plant lines.


Assuntos
Citocininas/metabolismo , Ácidos Graxos/metabolismo , Nicotiana/metabolismo , Espectinomicina/farmacologia , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Expressão Gênica , Vetores Genéticos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Nicotiana/genética , Transformação Genética , Transgenes
16.
BMC Neurosci ; 15: 93, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25082231

RESUMO

BACKGROUND: Parkinson's disease (PD) is the second most common neurodegenerative movement disorder, caused by preferential dopaminergic neuronal cell death in the substantia nigra, a process also influenced by oxidative stress. L-3,4-dihydroxyphenylalanine (L-DOPA) represents the main treatment route for motor symptoms associated with PD however, its exact mode of action remains unclear. A spectrum of conflicting data suggests that L-DOPA may damage dopaminergic neurons due to oxidative stress whilst other data suggest that L-DOPA itself may induce low levels of oxidative stress, which in turn stimulates endogenous antioxidant mechanisms and neuroprotection. RESULTS: In this study we performed a two-dimensional gel electrophoresis (2DE)-based proteomic study to gain further insight into the mechanism by which L-DOPA can influence the toxic effects of H2O2 in neuronal cells. We observed that oxidative stress affects metabolic pathways as well as cytoskeletal integrity and that neuronal cells respond to oxidative conditions by enhancing numerous survival pathways. Our study underlines the complex nature of L-DOPA in PD and sheds light on the interplay between oxidative stress and L-DOPA. CONCLUSIONS: Oxidative stress changes neuronal metabolic routes and affects cytoskeletal integrity. Further, L-DOPA appears to reverse some H2O2-mediated effects evident at both the proteome and cellular level.


Assuntos
Antiparkinsonianos/farmacologia , Levodopa/farmacologia , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Proteoma/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/fisiologia , Eletroforese em Gel Bidimensional , Humanos , Peróxido de Hidrogênio/toxicidade , Espectrometria de Massas , Neurônios/patologia , Neurônios/fisiologia , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo
17.
Mol Cell Biol ; 34(16): 3024-40, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24912681

RESUMO

Mutations in DJ-1 are a cause of recessive, early-onset Parkinson's disease (PD). Although oxidative stress and mitochondrial integrity have been implicated in PD, it is largely unknown why neurons degenerate. DJ-1 is involved in oxidative stress-mediated responses and in mitochondrial maintenance; however, its specific function remains vague. Here we show that DJ-1 exhibits neuronal dynamic intracellular trafficking, with dimeric/monomeric cycling modulated by the oxidative environment. We demonstrate that oxidative stress enhances monomerization of wild-type cytosolic DJ-1, leading to nuclear recruitment. The pathogenic DJ-1/E163K variant is unable to homodimerize but is retained in the cytosol upon wild-type DJ-1 heterodimerization. We found that this wild-type/pathogenic heterodimer is disrupted by oxidative stress, leading to DJ-1/E163K mitochondrial translocation. We further demonstrated that endogenously expressed wild-type DJ-1 is imported into neuronal nuclei as a monomer and that nucleo-cytoplasmic transport is oxidative stress mediated. We identified a novel proline-tyrosine nuclear localization signal (PY-NLS) in DJ-1, and we found that nuclear monomeric DJ-1 import is mediated by an oxidative stress-dependent interaction with karyopherin ß2. Our study provides evidence that oxidative stress-mediated intracellular trafficking of DJ-1, mediated by dynamic DJ-1 dimeric/monomeric cycling, is implicated in PD pathogenesis.


Assuntos
Núcleo Celular/metabolismo , Proteínas Oncogênicas/metabolismo , Estresse Oxidativo , Doença de Parkinson/metabolismo , Espécies Reativas de Oxigênio/metabolismo , beta Carioferinas/metabolismo , Animais , Linhagem Celular Tumoral , Núcleo Celular/genética , Citosol/metabolismo , Feminino , Humanos , Camundongos , Mitocôndrias , Neurônios/metabolismo , Proteínas Oncogênicas/genética , Doença de Parkinson/genética , Peroxirredoxinas , Proteína Desglicase DJ-1 , Transporte Proteico/genética , Proteínas de Ligação a RNA/genética , Transdução de Sinais/genética
18.
J Neurosci Res ; 92(9): 1167-77, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24798695

RESUMO

Parkinson's disease (PD) is a progressive and irreversible neurodegenerative disorder coupled to selective degeneration of dopamine-producing neurons in the substantia nigra. The majority of PD incidents are sporadic, but monogenic cases account for 5-10% of cases. Mutations in PINK1 cause autosomal recessive forms of early-onset PD, and PINK1 stimulates Omi/HtrA2/PARK13 protease activity when both proteins act as neuroprotective components in the same stress pathway. Studies on PINK1 and PARK13 have concentrated on phosphorylation-dependent PINK1-mediated activation of PARK13 and mitochondrial functions, because both proteins are classically viewed as mitochondrial. Although PARK13-mediated protective mechanisms are at least in part regulated by PINK1, little is known concerning how these two proteins are regulated in different subcellular compartments or, indeed, the influence of PARK13 on PINK1 characteristics. We show that PARK13 localizes to a variety of subcellular locations in neuronal cells and that PINK1, although more restrictive, also localizes to locations other than those previously reported. We demonstrate that PARK13 accumulation leads to a concomitant accumulation of PINK1 and that the increase in PINK1 levels is compartmental specific, indicating a correlative relationship between the two proteins. Moreover, we show that PARK13 and PINK1 protein levels accumulate in response to H2 O2 and L-DOPA treatments in a subcellular fashion and that both proteins show relocation to the cytoskeleton in response to H2 O2 . This H2 O2 -mediated relocation is abolished by PARK13 overexpression. This study shows that PARK13 and PINK1 are subcellular-specific, but dynamic, proteins with a reciprocal molecular relationship providing new insight into the complexity of PD.


Assuntos
Neurônios/citologia , Estresse Oxidativo/fisiologia , Doença de Parkinson/metabolismo , Proteínas Quinases/metabolismo , Frações Subcelulares/metabolismo , Linhagem Celular Tumoral , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Dopaminérgicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Peróxido de Hidrogênio/farmacologia , Levodopa/farmacologia , Mutação/genética , Neuroblastoma/patologia , Neurônios/efeitos dos fármacos , Oxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/genética , Proteínas Quinases/genética , RNA Mensageiro/metabolismo , Frações Subcelulares/efeitos dos fármacos , Fatores de Tempo , Transfecção
19.
Mol Neurobiol ; 49(3): 1181-99, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24323427

RESUMO

Recent advances within the field of proteomics, including both upstream and downstream protocols, have fuelled a transition from simple protein identification to functional analysis. A battery of proteomics approaches is now being employed for the analysis of protein expression levels, the monitoring of cellular activities and for gaining an increased understanding into biochemical pathways. Combined, these approaches are changing the way we study disease by allowing accurate and targeted, large scale protein analysis, which will provide invaluable insight into disease pathogenesis. Neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), prion disease, and other diseases that affect the neuromuscular system, are a leading cause of disability in the aging population. There are no effective intervention strategies for these disorders and diagnosis is challenging as it relies primarily on clinical symptomatic features, which often overlap at early stages of disease. There is, therefore, an urgent need to develop reliable biomarkers to improve early and specific diagnosis, to track disease progression, to measure molecular responses towards treatment regimes and ultimately devise new therapeutic strategies. To accomplish this, a better understanding of disease mechanisms is needed. In this review we summarize recent advances in the field of proteomics applicable to neurodegenerative disorders, and how these advances are fueling our understanding, diagnosis, and treatment of these complex disorders.


Assuntos
Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/genética , Proteômica/tendências , Animais , Humanos , Doenças Neurodegenerativas/metabolismo , Proteômica/métodos
20.
J Neurosci Res ; 92(1): 104-15, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24123299

RESUMO

Understanding the complex biology of the brain requires analyzing its structural and functional complexity at the protein level. The large-scale analysis of the brain proteome, coupled with characterization of central brain proteins, provides insight into fundamental brain processes and processes linked to neurodegenerative diseases. Here we provide a map of the zebrafish brain proteome by using two-dimensional gel electrophoresis (2DE), followed by the identification of 95 brain proteins using mass spectrometry (LC-ESI MS/MS). Our data show extensive phosphorylation of brain proteins but less prominent glycosylation. Furthermore, ~51% of the identified proteins are predicted to have one or more ubiquitination sites whereas ~90% are predicted to have one or more SUMOylation sites. Our findings provide a valuable proteome map of the zebrafish brain and associated posttranslational modifications demonstrating that zebrafish proteomic approaches can aid in our understanding of proteins central to important neuronal processes and those associated with neurodegenerative disorders.


Assuntos
Encéfalo/metabolismo , Degeneração Neural/metabolismo , Proteoma/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Eletroforese em Gel Bidimensional , Glicosilação , Degeneração Neural/genética , Fosforilação , Proteoma/genética , Proteômica/métodos , Espectrometria de Massas em Tandem , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...