Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 289(9): 2685-2705, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34767295

RESUMO

The opportunistic human pathogen Pseudomonas aeruginosa exhibits great resistance to antibiotics; so, new therapeutic agents are urgently needed. Since polyamines levels are incremented in infected tissues, we explored whether the formation of a toxic aldehyde in polyamines degradation can be exploited in combating infection. We cloned the gene encoding the only aminoaldehyde dehydrogenase involved in P. aeruginosa polyamines-degradation routes, PaPauC, overexpressed this enzyme, and found that it oxidizes 3-aminopropionaldehyde (APAL) and 3-glutamyl-3-aminopropionaldehyde (GluAPAL) - produced in spermine (Spm), spermidine (Spd), and diaminopropane (Dap) degradation, as well as 4-aminobutyraldehyde (ABAL) and 4-glutamyl-4-aminobutyraldehyde (GluABAL) - formed in putrescine (Put) degradation. As the catalytic efficiency of PaPauC with APAL was 30-times lower than with GluAPAL, and GluAPAL is predominantly formed, APAL will be poorly oxidized 'in vivo'. We found polyamines-induced increases in the PaPauC activity of cell crude-extracts and in the expression of the PapauC gene that were diminished by glucose. Spm, Spd, or Dap, but not Put, were toxic to P. aeruginosa even in the presence of other carbon and nitrogen sources, particularly to a strain with the PapauC gene disrupted. APAL, but not GluAPAL, was highly toxic even to wild-type cells, suggesting that its accumulation, particularly in the absence of, or low, PaPauC activity is responsible for the toxicity of Spm, Spd, and Dap. Our results shed light on the toxicity mechanism of these three polyamines and strongly support the critical role of PaPauC in this toxicity. Thus, PaPauC emerges as a novel potential drug target whose inhibition might help in combating infection by this important pathogen.


Assuntos
Espermidina , Espermina , Aldeído Desidrogenase , Humanos , Poliaminas/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Putrescina/farmacologia , Espermidina/farmacologia , Espermina/farmacologia
2.
Heliyon ; 7(11): e08464, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34888425

RESUMO

The photosynthetic phosphoenolpyruvate carboxylase isozyme from C4 plants (PEPC-C4) has a complex allosteric regulation, involving positive cooperativity in binding the substrate phosphoenolpyruvate as well as positive and negative allosteric effectors. Besides the proposed R- and T-states, previous kinetic results suggested functionally relevant different R-states of the maize enzyme (ZmPEPC-C4) elicited by PEP or its two kinds of activators, glucose 6-phosphate or glycine. To detect these different R-state conformations, we used as conformational probes the fluorescence of 8-anilino-1-naphthalene sulfonate (ANS), near-UV circular dichroism (CD) spectroscopy, and limited proteolysis by trypsin. Phosphoenolpyruvate and malate binding caused distinct concentration-dependent fluorescence changes of ZmPEPC-C4/ANS, suggesting that they elicited conformational states different from that of the free enzyme, while glucose 6-phosphate or glycine binding did not produce fluorescence changes. Differences were also observed in the near UV CD spectra of the enzyme, free or complexed with its substrate or allosteric effectors. Additionally, differences in the trypsin-digestion fragmentation patterns, as well as in the susceptibility of the free and complexed enzyme to digestion and digestion-provoked loss of activity, provided evidence of several ZmPEPC-C4 conformations in solution elicited by the substrate and the allosteric effectors. Using the already reported ZmPEPC-C4 crystal structures and bioinformatics methods, we predicted that the most probable trypsin-cleavage sites are located in superficial flexible regions, which seems relevant for the protein dynamics underlying the function and allosteric regulation of this enzyme. Together, our findings agree with previous kinetic results, shed light on this enzyme's complex allosteric regulation, and place ZmPEPC-C4 in the growing list of allosteric enzymes possessing an ensemble of closely related R-state conformations.

3.
Biochem J ; 477(11): 2095-2114, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32459324

RESUMO

Activation of phosphoenolpyruvate carboxylase (PEPC) enzymes by glucose 6-phosphate (G6P) and other phospho-sugars is of major physiological relevance. Previous kinetic, site-directed mutagenesis and crystallographic results are consistent with allosteric activation, but the existence of a G6P-allosteric site was questioned and competitive activation-in which G6P would bind to the active site eliciting the same positive homotropic effect as the substrate phosphoenolpyruvate (PEP)-was proposed. Here, we report the crystal structure of the PEPC-C4 isozyme from Zea mays with G6P well bound into the previously proposed allosteric site, unambiguously confirming its existence. To test its functionality, Asp239-which participates in a web of interactions of the protein with G6P-was changed to alanine. The D239A variant was not activated by G6P but, on the contrary, inhibited. Inhibition was also observed in the wild-type enzyme at concentrations of G6P higher than those producing activation, and probably arises from G6P binding to the active site in competition with PEP. The lower activity and cooperativity for the substrate PEP, lower activation by glycine and diminished response to malate of the D239A variant suggest that the heterotropic allosteric activation effects of free-PEP are also abolished in this variant. Together, our findings are consistent with both the existence of the G6P-allosteric site and its essentiality for the activation of PEPC enzymes by phosphorylated compounds. Furthermore, our findings suggest a central role of the G6P-allosteric site in the overall kinetics of these enzymes even in the absence of G6P or other phospho-sugars, because of its involvement in activation by free-PEP.


Assuntos
Glucose-6-Fosfato/química , Fosfoenolpiruvato Carboxilase/química , Fosfoenolpiruvato/química , Proteínas de Plantas/química , Zea mays/enzimologia , Regulação Alostérica , Domínio Catalítico , Glucose-6-Fosfato/metabolismo , Cinética , Fosfoenolpiruvato/metabolismo , Fosfoenolpiruvato Carboxilase/genética , Fosfoenolpiruvato Carboxilase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/genética
4.
J Biol Chem ; 293(26): 9945-9957, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29743237

RESUMO

The isozymes of photosynthetic phosphoenolpyruvate carboxylase from C4 plants (PEPC-C4) play a critical role in their atmospheric CO2 assimilation and productivity. They are allosterically activated by phosphorylated trioses or hexoses, such as d-glucose 6-phosphate, and inhibited by l-malate or l-aspartate. Additionally, PEPC-C4 isozymes from grasses are activated by glycine, serine, or alanine, but the allosteric site for these compounds remains unknown. Here, we report a new crystal structure of the isozyme from Zea mays (ZmPEPC-C4) with glycine bound at the monomer-monomer interfaces of the two dimers of the tetramer, making interactions with residues of both monomers. This binding site is close to, but different from, the one proposed to bind glucose 6-phosphate. Docking experiments indicated that d/l-serine or d/l-alanine could also bind to this site, which does not exist in the PEPC-C4 isozyme from the eudicot plant Flaveria, mainly because of a lysyl residue at the equivalent position of Ser-100 in ZmPEPC-C4 Accordingly, the ZmPEPC-C4 S100K mutant is not activated by glycine, serine, or alanine. Amino acid sequence alignments showed that PEPC-C4 isozymes from the monocot family Poaceae have either serine or glycine at this position, whereas those from Cyperaceae and eudicot families have lysine. The size and charge of the residue equivalent to Ser-100 are not only crucial for the activation of PEPC-C4 isozymes by neutral amino acids but also affect their affinity for the substrate phosphoenolpyruvate and their allosteric regulation by glucose 6-phosphate and malate, accounting for the reported kinetic differences between PEPC-C4 isozymes from monocot and eudicot plants.


Assuntos
Sítio Alostérico , Aminoácidos Neutros/metabolismo , Fosfoenolpiruvato Carboxilase/química , Fosfoenolpiruvato Carboxilase/metabolismo , Serina/metabolismo , Zea mays/enzimologia , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
5.
Biochem J ; 473(7): 873-85, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26792760

RESUMO

In plants, the last step in the biosynthesis of the osmoprotectant glycine betaine (GB) is the NAD(+)-dependent oxidation of betaine aldehyde (BAL) catalysed by some aldehyde dehydrogenase (ALDH) 10 enzymes that exhibit betaine aldehyde dehydrogenase (BADH) activity. Given the irreversibility of the reaction, the short-term regulation of these enzymes is of great physiological relevance to avoid adverse decreases in the NAD(+):NADH ratio. In the present study, we report that the Spinacia oleracea BADH (SoBADH) is reversibly and partially inactivated by BAL in the absence of NAD(+)in a time- and concentration-dependent mode. Crystallographic evidence indicates that the non-essential Cys(450)(SoBADH numbering) forms a thiohemiacetal with BAL, totally blocking the productive binding of the aldehyde. It is of interest that, in contrast to Cys(450), the catalytic cysteine (Cys(291)) did not react with BAL in the absence of NAD(+) The trimethylammonium group of BAL binds in the same position in the inactivating or productive modes. Accordingly, BAL does not inactivate the C(450)SSoBADH mutant and the degree of inactivation of the A(441)I and A(441)C mutants corresponds to their very different abilities to bind the trimethylammonium group. Cys(450)and the neighbouring residues that participate in stabilizing the thiohemiacetal are strictly conserved in plant ALDH10 enzymes with proven or predicted BADH activity, suggesting that inactivation by BAL is their common feature. Under osmotic stress conditions, this novel partial and reversible covalent regulatory mechanism may contribute to preventing NAD(+)exhaustion, while still permitting the synthesis of high amounts of GB and avoiding the accumulation of the toxic BAL.


Assuntos
Betaína-Aldeído Desidrogenase/química , Betaína/análogos & derivados , Mutação de Sentido Incorreto , Proteínas de Plantas/química , Spinacia oleracea/enzimologia , Substituição de Aminoácidos , Betaína/química , Betaína-Aldeído Desidrogenase/genética , Domínio Catalítico , Cristalografia por Raios X , Ativação Enzimática , Proteínas de Plantas/genética , Spinacia oleracea/genética
6.
BMC Plant Biol ; 14: 149, 2014 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-24884441

RESUMO

BACKGROUND: Plant ALDH10 enzymes are aminoaldehyde dehydrogenases (AMADHs) that oxidize different ω-amino or trimethylammonium aldehydes, but only some of them have betaine aldehyde dehydrogenase (BADH) activity and produce the osmoprotectant glycine betaine (GB). The latter enzymes possess alanine or cysteine at position 441 (numbering of the spinach enzyme, SoBADH), while those ALDH10s that cannot oxidize betaine aldehyde (BAL) have isoleucine at this position. Only the plants that contain A441- or C441-type ALDH10 isoenzymes accumulate GB in response to osmotic stress. In this work we explored the evolutionary history of the acquisition of BAL specificity by plant ALDH10s. RESULTS: We performed extensive phylogenetic analyses and constructed and characterized, kinetically and structurally, four SoBADH variants that simulate the parsimonious intermediates in the evolutionary pathway from I441-type to A441- or C441-type enzymes. All mutants had a correct folding, average thermal stabilities and similar activity with aminopropionaldehyde, but whereas A441S and A441T exhibited significant activity with BAL, A441V and A441F did not. The kinetics of the mutants were consistent with their predicted structural features obtained by modeling, and confirmed the importance of position 441 for BAL specificity. The acquisition of BADH activity could have happened through any of these intermediates without detriment of the original function or protein stability. Phylogenetic studies showed that this event occurred independently several times during angiosperms evolution when an ALDH10 gene duplicate changed the critical Ile residue for Ala or Cys in two consecutive single mutations. ALDH10 isoenzymes frequently group in two clades within a plant family: one includes peroxisomal I441-type, the other peroxisomal and non-peroxisomal I441-, A441- or C441-type. Interestingly, high GB-accumulators plants have non-peroxisomal A441- or C441-type isoenzymes, while low-GB accumulators have the peroxisomal C441-type, suggesting some limitations in the peroxisomal GB synthesis. CONCLUSION: Our findings shed light on the evolution of the synthesis of GB in plants, a metabolic trait of most ecological and physiological relevance for their tolerance to drought, hypersaline soils and cold. Together, our results are consistent with smooth evolutionary pathways for the acquisition of the BADH function from ancestral I441-type AMADHs, thus explaining the relatively high occurrence of this event.


Assuntos
Betaína-Aldeído Desidrogenase/metabolismo , Betaína/análogos & derivados , Evolução Molecular , Osmose , Spinacia oleracea/enzimologia , Betaína/metabolismo , Betaína-Aldeído Desidrogenase/química , Biocatálise , Estabilidade Enzimática , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Oxirredução , Filogenia
7.
PLoS One ; 8(1): e54899, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23365686

RESUMO

Many aldehyde dehydrogenases (ALDHs) have potential potassium-binding sites of as yet unknown structural or functional roles. To explore possible K(+)-specific effects, we performed comparative structural studies on the tetrameric betaine aldehyde dehydrogenase from Pseudomonas aeruginosa (PaBADH) and on the dimeric BADH from spinach (SoBADH), whose activities are K(+)-dependent and K(+)-independent, respectively, although both enzymes contain potassium-binding sites. Size exclusion chromatography, dynamic light scattering, far- and near-UV circular dichroism, and extrinsic fluorescence results indicated that in the absence of K(+) ions and at very low ionic strength, PaBADH remained tetrameric but its tertiary structure was significantly altered, accounting for its inactivation, whereas SoBADH formed tetramers that maintained the native tertiary structure. The recovery of PaBADH native tertiary-structure was hyperbolically dependent on KCl concentration, indicating potassium-specific structuring effects probably arising from binding to a central-cavity site present in PaBADH but not in SoBADH. K(+) ions stabilized the native structure of both enzymes against thermal denaturation more than did tetraethylammonium (TEA(+)) ions. This indicated specific effects of potassium on both enzymes, particularly on PaBADH whose apparent T(m) values showed hyperbolical dependence on potassium concentration, similar to that observed with the tertiary structure changes. Interestingly, we also found that thermal denaturation of both enzymes performed in low ionic-strength buffers led to formation of heat-resistant, inactive soluble aggregates that retain 80% secondary structure, have increased ß-sheet content and bind thioflavin T. These structured aggregates underwent further thermal-induced aggregation and precipitation when the concentrations of KCl or TEACl were raised. Given that PaBADH and SoBADH belong to different ALDH families and differ not only in amino acid composition but also in association state and surface electrostatic potential, the formation of this kind of ß-sheet pre-fibrillar aggregates, not described before for any ALDH enzyme, appear to be a property of the ALDH fold.


Assuntos
Proteínas de Bactérias/química , Betaína-Aldeído Desidrogenase/química , Proteínas de Plantas/química , Potássio/química , Pseudomonas aeruginosa/química , Spinacia oleracea/química , Benzotiazóis , Sítios de Ligação , Cátions Monovalentes , Estabilidade Enzimática , Temperatura Alta , Modelos Moleculares , Concentração Osmolar , Dobramento de Proteína , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/enzimologia , Proteínas Recombinantes , Spinacia oleracea/enzimologia , Tetraetilamônio/química , Tiazóis/química
8.
Plant Physiol ; 158(4): 1570-82, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22345508

RESUMO

Plant Aldehyde Dehydrogenase10 (ALDH10) enzymes catalyze the oxidation of ω-primary or ω-quaternary aminoaldehydes, but, intriguingly, only some of them, such as the spinach (Spinacia oleracea) betaine aldehyde dehydrogenase (SoBADH), efficiently oxidize betaine aldehyde (BAL) forming the osmoprotectant glycine betaine (GB), which confers tolerance to osmotic stress. The crystal structure of SoBADH reported here shows tyrosine (Tyr)-160, tryptophan (Trp)-167, Trp-285, and Trp-456 in an arrangement suitable for cation-π interactions with the trimethylammonium group of BAL. Mutation of these residues to alanine (Ala) resulted in significant K(m)(BAL) increases and V(max)/K(m)(BAL) decreases, particularly in the Y160A mutant. Tyr-160 and Trp-456, strictly conserved in plant ALDH10s, form a pocket where the bulky trimethylammonium group binds. This space is reduced in ALDH10s with low BADH activity, because an isoleucine (Ile) pushes the Trp against the Tyr. Those with high BADH activity instead have Ala (Ala-441 in SoBADH) or cysteine, which allow enough room for binding of BAL. Accordingly, the mutation A441I decreased the V(max)/K(m)(BAL) of SoBADH approximately 200 times, while the mutation A441C had no effect. The kinetics with other ω-aminoaldehydes were not affected in the A441I or A441C mutant, demonstrating that the existence of an Ile in the second sphere of interaction of the aldehyde is critical for discriminating against BAL in some plant ALDH10s. A survey of the known sequences indicates that plants have two ALDH10 isoenzymes: those known to be GB accumulators have a high-BAL-affinity isoenzyme with Ala or cysteine in this critical position, while non GB accumulators have low-BAL-affinity isoenzymes containing Ile. Therefore, BADH activity appears to restrict GB synthesis in non-GB-accumulator plants.


Assuntos
Aminoácidos/metabolismo , Betaína-Aldeído Desidrogenase/metabolismo , Betaína/análogos & derivados , Spinacia oleracea/enzimologia , Aminoácidos Aromáticos/metabolismo , Betaína/química , Betaína/metabolismo , Betaína-Aldeído Desidrogenase/química , Sítios de Ligação , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
9.
Chem Biol Interact ; 178(1-3): 64-9, 2009 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-19028474

RESUMO

Betaine aldehyde dehydrogenase (BADH) catalyses the irreversible oxidation of betaine aldehyde to glycine betaine with the concomitant reduction of NAD(P)(+) to NAD(P)H. In the opportunistic pathogen Pseudomonas aeruginosa, this enzyme (PaBADH) could be an antimicrobial target. Several aldehyde dehydrogenases (ALDHs) are inactivated by arsenite in the presence of a low molecular thiol, a finding that was interpreted as a demonstration of the existence of vicinal thiols in these enzymes. As part of our studies on the susceptibility to chemical modification of the catalytic cysteine (C286) of PaBADH, we treated the enzyme with two arsenical reagents widely used to inhibit enzymes that have vicinal thiols: sodium m-arsenite plus 2,3-dimercaptopropanol (arsenite-BAL) and phenylarsine oxide (PAO). Here we report that they readily and reversibly inactivate PaBADH, even though the four cysteine residues of this enzyme (C286, C353, C377, and C439) are far from each other in the three-dimensional structure. Modification of PaBADH by both reagents was reversible by an excess of a dithiol (dithiothreitol), but only the PAO-modified enzyme could be reactivated by a monothiol (2-mercaptoethanol). C286 is the reactive residue as indicated by the following findings: (i) betaine aldehyde and NADP(+) afforded full protection against enzyme inactivation; (ii) the mutant proteins C353A, C377A, and C439A showed similar inactivation kinetics that the wild-type enzyme, and (iii) pretreatment of PaBADH with arsenite-BAL prevented irreversible inactivation by N-ethylmaleimide. Our results confirm previous findings on other ALDHs, and indicate that these vicinal thiol-specific reagents readily react with certain monothiols, such as the one of the catalytic cysteinyl residue of ALDHs. As arsenicals are being recently used to treat certain cancers, human ALDHs, even those not having conformationally vicinal thiols, may be unsuspected targets in these treatments.


Assuntos
Arsenicais/metabolismo , Arsenitos/metabolismo , Betaína-Aldeído Desidrogenase/metabolismo , Cisteína/metabolismo , Dimercaprol/metabolismo , Pseudomonas aeruginosa/enzimologia , Betaína-Aldeído Desidrogenase/antagonistas & inibidores , Betaína-Aldeído Desidrogenase/química , Betaína-Aldeído Desidrogenase/isolamento & purificação , Biocatálise , Cinética , Modelos Moleculares , Conformação Proteica , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
10.
Biochem Biophys Res Commun ; 341(2): 408-15, 2006 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-16426571

RESUMO

In the human pathogen Pseudomonas aeruginosa, betaine aldehyde dehydrogenase (PaBADH) may play the dual role of assimilating carbon and nitrogen from choline or choline precursors--abundant at infection sites--and producing glycine betaine, which protects the bacterium against the high-osmolality stress prevalent in the infected tissues. This tetrameric enzyme contains four cysteine residues per subunit and is a potential drug target. In our search for specific inhibitors, we mutated the catalytic Cys286 to alanine and chemically modified the recombinant wild-type and the four Cys-->Ala single mutants with thiol reagents. The small methyl-methanethiosulfonate inactivated the enzymes without affecting their stability while the bulkier dithionitrobenzoic acid (DTNB) and bis[diethylthiocarbamyl] disulfide (disulfiram) induced enzyme dissociation--at 23 degrees C--and irreversible aggregation--at 37 degrees C. Of the four Cys-->Ala mutants only C286A retained its tetrameric structure after DTNB or disulfiram treatments, suggesting that steric constraints arising upon the covalent attachment of a bulky group to C286 resulted in distortion of the backbone configuration in the active site region followed by a severe decrease in enzyme stability. Since neither NAD(P)H nor betaine aldehyde prevented disulfiram-induced PaBADH inactivation or aggregation, and reduced glutathione was unable to restore the activity of the modified enzyme, we propose that disulfiram could be a useful drug to combat infection by P. aeruginosa.


Assuntos
Anti-Infecciosos/farmacologia , Betaína-Aldeído Desidrogenase/metabolismo , Dissulfiram/farmacologia , Inibidores Enzimáticos/farmacologia , Pseudomonas aeruginosa/metabolismo , Alanina/química , Sítios de Ligação , Catálise , Cromatografia , Cisteína/química , Ácido Ditionitrobenzoico/farmacologia , Glutationa/química , Cinética , Metanossulfonato de Metila/análogos & derivados , Metanossulfonato de Metila/farmacologia , Modelos Químicos , Mutagênese Sítio-Dirigida , Mutação , NADP/química , Conformação Proteica , Estrutura Quaternária de Proteína , Proteínas/química , Compostos de Sulfidrila , Temperatura , Fatores de Tempo
11.
Arch Microbiol ; 185(1): 14-22, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16315011

RESUMO

In the human pathogen Pseudomonas aeruginosa, betaine aldehyde dehydrogenase (BADH) may play a dual role assimilating carbon and nitrogen from choline or choline precursors--abundant at infection sites--and producing glycine betaine, which protects the bacteria against the high-osmolarity stress prevalent in the infected tissues. We cloned the P. aeruginosa BADH gene and expressed the BADH protein in Escherichia coli. The recombinant protein appears identical to its native counterpart, as judged by Western blot, N-terminal amino acid sequence, tryptophan-fluorescence emission spectra, circular-dichroism spectroscopy, size-exclusion chromatography, and kinetic properties. Computational analysis indicated that the promoter sequence of the putative operon that includes the BADH gene has a consensus-binding site for the choline-sensing transcription repressor BetI, and putative boxes for ArcA and Lrp transcription factors but no known elements of response to osmotic stress. This is consistent with the strong induction of BADH expression by choline and with the lack of effect of NaCl. As there were significant amounts of BADH protein and activity in P. aeruginosa cells grown on glucose plus choline, as well as the BADH activity exhibiting tolerance to salt, it is likely that glycine betaine is synthesized in vivo and could play an important osmoprotectant role under conditions of infection.


Assuntos
Betaína-Aldeído Desidrogenase/genética , Colina/metabolismo , Pseudomonas aeruginosa/enzimologia , Cloreto de Sódio/metabolismo , Sequência de Bases , Betaína-Aldeído Desidrogenase/biossíntese , Betaína-Aldeído Desidrogenase/metabolismo , Colina/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Glucose/genética , Glucose/metabolismo , Biologia Molecular , Dados de Sequência Molecular , Pseudomonas aeruginosa/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
12.
Biochimie ; 87(12): 1056-64, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16054744

RESUMO

Betaine aldehyde dehydrogenase (BADH) from the human pathogen Pseudomonas aeruginosa is a tetrameric enzyme that contains a catalytic Cys286 and three additional cysteine residues, Cys353, 377, and 439, per subunit. In the present study, we have investigated the role of the three non-essentials in enzyme activity and stability by homology modeling and site-directed mutagenesis. Cys353 and Cys377 are located at the protein surface with their sulfur atoms buried, while Cys439 is at the subunit interface between the monomers forming a dimeric pair. All three residues were individually mutated to alanine and Cys439 also to serine and valine. The five mutant proteins were expressed in Escherichia coli and purified to homogeneity. Their steady-state kinetics was not significantly affected, neither was their structure as indicated by circular dicroism spectropolarimetry, protein intrinsic fluorescence, and size-exclusion chromatography. However, stability was severely reduced in the Cys439 mutants particularly in C439S and C439V, which were inactive when expressed at 37 degrees C. They also exhibited higher sensitivity to thermal and chemical inactivation, and higher propensity to dissociation by dilution or exposure to low ionic strength than the wild-type enzyme. Size-exclusion chromatography indicates that substitution of Cys439 lead to unstable dimers or to stable dimeric conformations not compatible with a stable tetrameric structure. To the best of our knowledge, this is the first study of an aldehyde dehydrogenase revealing a residue at the dimer interface involved in holding the dimer, and consequently the tetramer, together.


Assuntos
Betaína-Aldeído Desidrogenase/genética , Betaína-Aldeído Desidrogenase/metabolismo , Citosina , Pseudomonas aeruginosa/enzimologia , Substituição de Aminoácidos , Animais , Betaína-Aldeído Desidrogenase/química , Dicroísmo Circular , Peixes , Cinética , Fígado/enzimologia , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Desnaturação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Termodinâmica
13.
Chem Biol Interact ; 143-144: 129-37, 2003 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-12604197

RESUMO

The reaction catalyzed by betaine aldehyde dehydrogenase (BADH) involves the nucleophilic attack of a catalytic cysteinyl residue on the aldehyde substrate. As a possible mechanism of regulation, we have studied the modulation by ligands of the reactivity and/or accessibility of the essential thiol of the enzyme from the human pathogen Pseudomonas aeruginosa and the leaves of the plant Amaranthus hypochondriacus (amaranth). In the absence of ligands, the kinetics of inactivation by thiol modifying reagents of both enzymes were biphasic, suggesting the existence of two enzyme conformers differing in the reactivity of their catalytic thiolate. Preincubation of P. aeruginosa BADH with the coenzymes or the aldehyde prior to the chemical modification brought about active site rearrangements that resulted in an important decrease in the inactivation rate. Amaranth BADH responded similarly to the preincubation with NADH or betaine aldehyde but NAD(+) elicited opposite changes, increasing the rate of inactivation after prolonged preincubation. In amaranth BADH, the different behavior of both coenzymes, and the observed biphasic inactivation kinetics are consistent with the previously proposed iso kinetic mechanism, characterized by the existence of two interconvertible apoenzyme forms, one able to bind NAD(+) and the other NADH. Taken together, our results suggest that ligand-induced conformational changes in BADH from the two sources studied might be important for both proper enzyme function and protection against oxidation.


Assuntos
Aldeído Oxirredutases/metabolismo , Amaranthus/enzimologia , Pseudomonas aeruginosa/enzimologia , Compostos de Sulfidrila/metabolismo , Aldeído Oxirredutases/química , Betaína-Aldeído Desidrogenase , Catálise , Cinética , Ligantes , Folhas de Planta/enzimologia , Conformação Proteica
14.
Chem Biol Interact ; 143-144: 139-48, 2003 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-12604198

RESUMO

Betaine aldehyde dehydrogenase from the human pathogen Pseudomonas aeruginosa requires K(+) ions for maintenance of its active conformation. In order to explore if this property is shared by other BADHs of different origins and to further understand the mechanism underlying the effects of these ions, we carried out a comparative study on the stability and quaternary structure of P. aeruginosa, porcine kidney and amaranth leaves BADHs in the absence of K(+) ions. At low enzyme concentrations, the bacterial and porcine enzymes were totally inactivated upon removal of K(+) following biphasic and monophasic kinetics, respectively, whereas the amaranth enzyme retained its activity. Inactivation of P. aeruginosa BADH was much faster than that of the porcine enzyme. The oxidized coenzyme protected both enzymes against inactivation by the absence of K(+), whereas betaine aldehyde afforded partial protection to the bacterial BADH and increased the inactivation rate of the porcine. Reactivation of the inactive enzymes, by adding back to the incubation medium K(+) ions, was dependent on enzyme concentration, suggesting that enzyme dissociation takes place in the absence of K(+). In the bacterial enzyme, NH(4)(+) but not Na(+) ions could mimic the effects of K(+), whereas the three cations tested reactivated porcine BADH, indicating a requirement of this enzyme for high ionic strength rather than for a specific monovalent cation. Size exclusion chromatography of the inactivated enzymes confirmed that K(+) ions or other monovalent cations are required for the maintenance of the quaternary structure of these two BADHs. At pH 7.0, in the absence of K(+) in a buffer of low ionic strength, the active tetrameric form of P. aeruginosa BADH dissociated into inactive monomers and that of porcine kidney BADH into inactive dimers. Once reactivated, both enzymes reassociated into active tetramers.


Assuntos
Aldeído Oxirredutases/metabolismo , Amaranthus/enzimologia , Rim/enzimologia , Pseudomonas aeruginosa/enzimologia , Aldeído Oxirredutases/antagonistas & inibidores , Animais , Betaína-Aldeído Desidrogenase , Cátions Monovalentes , Estabilidade Enzimática , Folhas de Planta/enzimologia , Especificidade por Substrato , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...