Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 58(22): 8063-76, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24172988

RESUMO

We propose a novel x-ray fluorescence imaging setup for the in vivo detection of high-Z tracer distributions. The main novel aspect is the use of an analyzer-based, energy-resolved detection method together with a radial, scatter reducing collimator. The aim of this work is to show the feasibility of this method by measuring the Bragg reflected K-fluorescence signal of an iodine solution sample in a proof of principle experiment and to estimate the potential of the complete imaging setup using a Monte Carlo simulation, including a quantification of the minimal detectable tracer concentration for in vivo imaging. The proof of principle experiment shows that even for a small detector area of approximately 7 mm(2), the collimated and Bragg reflected K-fluorescence signal of a sample containing an iodine solution with a concentration of 50 µg ml(-1) can be detected. The Monte Carlo simulation also shows that the proposed x-ray fluorescence imaging setup has the potential to image distributions of high-Z tracers in vivo at a radiation dose of a few mGy and at tracer concentrations down to 1 µg ml(-1) for iodine in small animals.


Assuntos
Imagem Molecular/métodos , Imagem Óptica/métodos , Método de Monte Carlo , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...