Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 10(7)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35884877

RESUMO

Earlier studies with nanoparticles carrying siRNA were restricted to investigating the inhibition of target-specific protein expression, while almost ignoring effects related to the nanoparticle composition. Here, we demonstrate how the design and surface decoration of nanoparticles impact the p65 nuclear factor-kappa B (NF-κB) protein expression in inflamed leucocytes and endothelial cells in vitro. We prepared silica-coated calcium phosphate nanoparticles carrying encapsulated siRNA against p65 NF-κB and surface-decorated with peptides or antibodies. We show that RGD-decorated nanoparticles are efficient in down-regulating p65 NF-κB protein expression in endothelial cells as a result of an enhanced specific cellular binding and subsequent uptake of nanoparticles. In contrast, nanoparticles decorated with IgG (whether specific or not for CD69) are efficient in down-regulating p65 NF-κB protein expression in T-cells, but not in B-cells. Thus, an optimized nanoparticle decoration with xenogenic IgG may stimulate a specific cellular uptake. In summary, the composition of siRNA-loaded calcium phosphate nanoparticles can either weaken or stimulate p65 NF-κB protein expression in targeted inflamed leucocytes and endothelial cells. In general, unveiling such interactions may be very useful for the future design of anti-p65 siRNA-based nanomedicines for treatment of inflammation-associated diseases.

2.
Pharmaceutics ; 14(2)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35214151

RESUMO

Ulcerative colitis is a disease that causes inflammation and ulcers in the colon and which is typically recurrent, and NF-κB proteins are important players during disease progression. Here, we assess the impact of silica-coated calcium phosphate nanoparticles carrying encapsulated siRNA against NF-κB p65 on a murine model of colitis. To this end, nanoparticles were injected intravenously (2.0 mg siRNA/kg body weight) into mice after colitis induction with dextran sulfate sodium or healthy ones. The disease activity index, the histopathological impact on the colon, the protein expression of several NF-κB-associated players, and the mediator secretion (colon tissue, blood) were analyzed. We found that the nanoparticles effectively alleviated the clinical and histopathological features of colitis. They further suppressed the expression of NF-κB proteins (e.g., p65, p50, p52, p100, etc.) in the colon. They finally attenuated the local (colon) or systemic (blood) pro-inflammatory mediator secretion (e.g., TNF-α, IFN-ß, MCP-1, interleukins, etc.) as well as the leucocyte load of the spleen and mesenteric lymph nodes. The nanoparticle biodistribution in diseased animals was seen to pinpoint organs containing lymphoid entities (appendix, intestine, lung, etc.). Taken together, the nanoparticle-related silencing of p65 NF-κB protein expression could well be used for the treatment of ulcerative colitis in the future.

3.
Biomaterials ; 276: 121013, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34252802

RESUMO

The transcription factor NF-κB and its signaling cascade both play key roles in all inflammatory processes. The most critical member of the NF-κB transcription factor family is p65. We investigated the role of cationic silica-coated calcium phosphate nanoparticles (spherical, diameter by SEM 50-60 nm; zeta potential about +26 mV; stabilized by polyethyleneimine) carrying encapsulated siRNA against NF-κB p65 and their influence on inflamed cells. The nanoparticles were taken up by cells of the blood compartment involved in the inflammatory response, particularly by monocytes, and to a lesser extent by endothelial cells and B-cells, but not by T-cells. The particles were found in endolysosomes where they were dissolved at low pH and released the siRNA into the cytoplasm. This was confirmed by dissolution experiments of model nanoparticles in simulated endolysosomal medium (pH 4.7) and by intracellular co-localization studies of double-labeled nanoparticles (using a negatively charged model peptide for siRNA). The encapsulated functional siRNA reverted the p65 gene and protein expression in inflamed monocytes, the main cells in immune response and surveillance, almost back to the non-inflammatory condition. Additionally, the nanoparticles suppressed the pro-inflammatory cytokine expression profiles (TNF-α, IL-6, IFN-ß) in inflamed J774A.1 monocytes. Taken together, such nanoparticles can be applied for the treatment of inflammatory diseases.


Assuntos
NF-kappa B , Nanopartículas , Fosfatos de Cálcio , Células Endoteliais/metabolismo , Inativação Gênica , Humanos , Inflamação , NF-kappa B/metabolismo , RNA Interferente Pequeno , Dióxido de Silício , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo
4.
J Cancer Res Clin Oncol ; 145(11): 2835-2843, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31506740

RESUMO

PURPOSE: Molecular mechanisms of response to hypomethylating agents in patients with myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML) still remain largely unknown. Therefore, the effects of 5-Azacytidine (Aza) on clonal architecture and DNA methylation were investigated in this study. METHODS: Using next-generation sequencing (NGS), 30 myeloid leukemia-associated genes were analyzed in 15 MDS/CMML patients with excellent response to Aza. Effects on methylation levels were analyzed by quantitative methylation analysis using pyrosequencing for the global methylation marker LINE-1 in patients and myeloid cell lines. Various myeloid cell lines and a healthy cohort were screened for methylation levels in 23 genes. Selected targets were verified on the MDS/CMML cohort. RESULTS: The study presented here showed a stable variant allele frequency and stable global methylation levels in responding patients. A significant demethylation of EZH2 and NOTCH1 was revealed in patients with Aza response. CONCLUSIONS: A response to Aza is not associated with eradication of malignant clones, but rather with a stabilization of the clonal architecture. We suggest changes in CpG methylation levels of EZH2 and NOTCH1 as potential targets of epigenetic response to Aza treatment which may also serve as useful biomarkers after clinical evaluation.


Assuntos
Azacitidina/farmacologia , Biomarcadores Tumorais/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Leucemia Mielomonocítica Crônica/genética , Síndromes Mielodisplásicas/genética , Receptor Notch1/genética , Idoso , Antimetabólitos Antineoplásicos/farmacologia , Estudos de Casos e Controles , Ilhas de CpG , Metilação de DNA , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Seguimentos , Perfilação da Expressão Gênica , Humanos , Leucemia Mielomonocítica Crônica/tratamento farmacológico , Leucemia Mielomonocítica Crônica/patologia , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/patologia , Prognóstico , Receptor Notch1/metabolismo , Células Tumorais Cultivadas
5.
Nanomaterials (Basel) ; 8(2)2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29443880

RESUMO

Magnetic nanoparticles are interesting tools for biomedicine. Before application, critical prerequisites have to be fulfilled. An important issue is the contact and interaction with biological barriers such as the blood-placenta barrier. In order to study these processes in detail, suitable in vitro models are needed. For that purpose a blood-placenta barrier model based on the trophoblast-like cell line BeWo and primary placenta-derived pericytes was established. This model was characterized by molecular permeability, transepithelial electrical resistance and cell-cell-contact markers. Superparamagnetic iron oxide nanoparticles (SPIONs) with cationic, anionic or neutral surface charge were applied. The localization of the nanoparticles within the cells was illustrated by histochemistry. The time-dependent passage of the nanoparticles through the BeWo/pericyte barrier was measured by magnetic particle spectroscopy and atomic absorption spectroscopy. Cationically coated SPIONs exhibited the most extensive interaction with the BeWo cells and remained primarily in the BeWo/pericyte cell layer. In contrast, SPIONs with neutral and anionic surface charge were able to pass the cell layer to a higher extent and could be detected beyond the barrier after 24 h. This study showed that the mode of SPION interaction with and passage through the in vitro blood-placenta barrier model depends on the surface charge and the duration of treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...