Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astron Astrophys ; 6472021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34257461

RESUMO

CONTEXT: For all the amides detected in the interstellar medium (ISM), the corresponding nitriles or isonitriles have also been detected in the ISM, some of which have relatively high abundances. Among the abundant nitriles for which the corresponding amide has not yet been detected is cyanoacetylene (HCCCN), whose amide counterpart is propiolamide (HCCC(O)NH2). AIMS: With the aim of supporting searches for this amide in the ISM, we provide a complete rotational study of propiolamide from 6 GHz to 440 GHz. METHODS: Time-domain Fourier transform microwave (FTMW) spectroscopy under supersonic expansion conditions between 6 GHz and 18 GHz was used to accurately measure and analyze ground-state rotational transitions with resolved hyperfine structure arising from nuclear quadrupole coupling interactions of the 14N nucleus. We combined this technique with the frequency-domain room-temperature millimeter wave and submillimeter wave spectroscopies from 75 GHz to 440 GHz in order to record and assign the rotational spectra in the ground state and in the low-lying excited vibrational states. We used the ReMoCA spectral line survey performed with the Atacama Large Millimeter/submillimeter Array toward the star-forming region Sgr B2(N) to search for propiolamide. RESULTS: We identified and measured more than 5500 distinct frequency lines of propiolamide in the laboratory. These lines were fitted using an effective semi-rigid rotor Hamiltonian with nuclear quadrupole coupling interactions taken into consideration. We obtained accurate sets of spectroscopic parameters for the ground state and the three low-lying excited vibrational states. We report the nondetection of propiolamide toward the hot cores Sgr B2(N1S) and Sgr B2(N2). We find that propiolamide is at least 50 and 13 times less abundant than acetamide in Sgr B2(N1S) and Sgr B2(N2), respectively, indicating that the abundance difference between both amides is more pronounced by at least a factor of 8 and 2, respectively, than for their corresponding nitriles. CONCLUSIONS: Although propiolamide has yet to be included in astrochemical modeling networks, the observed upper limit to the ratio of propiolamide to acetamide seems consistent with the ratios of related species as determined from past simulations. The comprehensive spectroscopic data presented in this paper will aid future astronomical searches.

2.
Astron Astrophys ; 6392020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33154598

RESUMO

CONTEXT: Glycolamide is a glycine isomer and also one of the simplest derivatives of acetamide (e.g., one hydrogen atom is replaced with a hydroxyl group), which is a known interstellar molecule. AIMS: In this context, the aim of our work is to provide direct experimental frequencies of the ground vibrational state of glycolamide in the centimeter-, millimeter- and submillimeter-wavelength regions in order to enable its identification in the interstellar medium. METHODS: We employed a battery of state-of-the-art rotational spectroscopic techniques in the frequency and time domain to measure the frequencies of glycolamide. We used the spectral line survey named Exploring Molecular Complexity with ALMA (EMoCA), which was performed toward the star forming region Sgr B2(N) with ALMA to search for glycolamide in space. We also searched for glycolamide toward Sgr B2(N) with the Effelsberg radio telescope. The astronomical spectra were analyzed under the local thermodynamic equilibrium approximation. We used the gas-grain chemical kinetics model MAGICKAL to interpret the results of the astronomical observations. RESULTS: About 1500 transitions have been newly assigned up to 460 GHz to the most stable conformer, and a precise set of spectroscopic constants was determined. Spectral features of glycolamide were then searched for in the prominent hot molecular core Sgr B2(N2). We report the nondetection of glycolamide toward this source with an abundance at least six and five times lower than that of acetamide and glycolaldehyde, respectively. Our astrochemical model suggests that glycolamide may be present in this source at a level just below the upper limit, which was derived from the EMoCA survey. We could also not detect the molecule in the region's extended molecular envelope, which was probed with the Effelsberg telescope. We find an upper limit to its column density that is similar to the column densities obtained earlier for acetamide and glycolaldehyde with the Green Bank Telescope.

3.
Science ; 369(6510): 1497-1500, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32943524

RESUMO

Binary interactions dominate the evolution of massive stars, but their role is less clear for low- and intermediate-mass stars. The evolution of a spherical wind from an asymptotic giant branch (AGB) star into a nonspherical planetary nebula (PN) could be due to binary interactions. We observed a sample of AGB stars with the Atacama Large Millimeter/submillimeter Array (ALMA) and found that their winds exhibit distinct nonspherical geometries with morphological similarities to planetary nebulae (PNe). We infer that the same physics shapes both AGB winds and PNe; additionally, the morphology and AGB mass-loss rate are correlated. These characteristics can be explained by binary interaction. We propose an evolutionary scenario for AGB morphologies that is consistent with observed phenomena in AGB stars and PNe.

4.
Astrophys J ; 832(1)2016 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31844334

RESUMO

We present results from a comprehensive submillimeter spectral survey toward the source Orion South, based on data obtained with the HIFI instrument aboard the Herschel Space Observatory, covering the frequency range 480 to 1900 GHz. We detect 685 spectral lines with S/N > 3σ, originating from 52 different molecular and atomic species. We model each of the detected species assuming conditions of Local Thermodynamic Equilibrium. This analysis provides an estimate of the physical conditions of Orion South (column density, temperature, source size, & V LSR ). We find evidence for three different cloud components: a cool (T ex ~ 20 - 40 K), spatially extended (> 60″), and quiescent (ΔVFWHM ~ 4 km s -1) component; a warmer (T ex ~ 80 - 100 K), less spatially extended (~ 30″), and dynamic (ΔVFWHM ~ 8 km s -1) component, which is likely affected by embedded outflows; and a kinematically distinct region (T ex > 100 K; V LSR ~ 8 km s -1), dominated by emission from species which trace ultraviolet irradiation, likely at the surface of the cloud. We find little evidence for the existence of a chemically distinct "hot core" component, likely due to the small filling factor of the hot core or hot cores within the Herschel beam. We find that the chemical composition of the gas in the cooler, quiescent component of Orion South more closely resembles that of the quiescent ridge in Orion-KL. The gas in the warmer, dynamic component, however, more closely resembles that of the Compact Ridge and Plateau regions of Orion-KL, suggesting that higher temperatures and shocks also have an influence on the overall chemistry of Orion South.

5.
Astrophys J ; 812(1)2015 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-26568638

RESUMO

We present the first ~7.5'×11.5' velocity-resolved (~0.2 km s-1) map of the [C ii] 158 µm line toward the Orion molecular cloud 1 (OMC 1) taken with the Herschel/HIFI instrument. In combination with far-infrared (FIR) photometric images and velocity-resolved maps of the H41α hydrogen recombination and CO J=2-1 lines, this data set provides an unprecedented view of the intricate small-scale kinematics of the ionized/PDR/molecular gas interfaces and of the radiative feedback from massive stars. The main contribution to the [C ii] luminosity (~85 %) is from the extended, FUV-illuminated face of the cloud (G0>500, nH>5×103 cm-3) and from dense PDRs (G≳104, nH≳105 cm-3) at the interface between OMC 1 and the H ii region surrounding the Trapezium cluster. Around ~15 % of the [C ii] emission arises from a different gas component without CO counterpart. The [C ii] excitation, PDR gas turbulence, line opacity (from [13C ii]) and role of the geometry of the illuminating stars with respect to the cloud are investigated. We construct maps of the L[C ii]/LFIR and LFIR/MGas ratios and show that L[C ii]/LFIR decreases from the extended cloud component (~10-2-10-3) to the more opaque star-forming cores (~10-3-10-4). The lowest values are reminiscent of the "[C ii] deficit" seen in local ultra-luminous IR galaxies hosting vigorous star formation. Spatial correlation analysis shows that the decreasing L[C ii]/LFIR ratio correlates better with the column density of dust through the molecular cloud than with LFIR/MGas. We conclude that the [C ii] emitting column relative to the total dust column along each line of sight is responsible for the observed L[C ii]/LFIR variations through the cloud.

6.
J Chem Phys ; 137(10): 104313, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22979865

RESUMO

In this work, terahertz and Fourier transform far-infrared (FTFIR) synchrotron spectra of methyl mercaptan, CH(3)SH, have been investigated in order to provide new laboratory information for enhanced observations of this species in interstellar molecular clouds and star-forming regions. Like its methanol cousin, methyl mercaptan has particularly rich spectra associated with its large-amplitude internal rotation that extend throughout the THz and FIR regions. We have recorded new spectra for CH(3)SH from 1.1-1.5 and 1.790-1.808 THz at the University of Cologne as well as high-resolution FTFIR synchrotron spectra from 50-550 cm(-1) at 0.001 cm(-1) resolution on the far-IR beam-line at the Canadian Light Source. Assignments are reported for rotational quantum numbers up to J ≈ 40 and K ≈ 15, and torsional states up to v(t) = 2 for the THz measurements and v(t) = 3 for the FTFIR observations. The THz and FTFIR measurements together with literature results have been combined in a global analysis of a dataset comprising a total of 1725 microwave and THz frequencies together with ~18000 FTFIR transitions, ranging up to v(t) = 2 and J(max) = 30 for MW∕THz and 40 for FTFIR. The global fit employs 78 torsion-rotation parameters and has achieved a weighted standard deviation of ~1.1. A prediction list (v(t) ≤ 2, J ≤ 45 and K ≤ 20) has been generated from the model giving essentially complete coverage of observable CH(3)(32)SH transitions within the bandwidths of major new astronomical facilities such as HIFI (Heterodyne Instrument for the Far Infrared) on the Herschel Space Observatory, ALMA (Atacama Large Millimeter Array), SOFIA (Stratospheric Observatory For Infrared Astronomy) and APEX (Atacama Pathfinder Experiment) to close to spectroscopic accuracy.


Assuntos
Compostos de Sulfidrila/química , Modelos Moleculares , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia Terahertz
7.
Phys Chem Chem Phys ; 9(13): 1579-86, 2007 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-17429551

RESUMO

Pure rotational transitions of silicon monosulfide ((28)Si(32)S) and its rare isotopic species have been observed in their ground as well as vibrationally excited states by employing Fourier transform microwave (FTMW) spectroscopy of a supersonic molecular beam at centimetre wavelengths (13-37 GHz) and by using long-path absorption spectroscopy at millimetre and submillimetre wavelengths (127-925 GHz). The latter measurements include 91 transition frequencies for (28)Si(32)S, (28)Si(33)S, (28)Si(34)S, (29)Si(32)S and (30)Si(32)S in upsilon = 0, as well as 5 lines for (28)Si(32)S in upsilon = 1, with rotational quantum numbers J''< or = 52. The centimetre-wave measurements include more than 300 newly recorded lines. Together with previous data they result in almost 600 transitions (J'' = 0 and 1) from all twelve possible isotopic species, including (29)Si(36)S and (30)Si(36)S, which have fractional abundances of about 7 x 10(-6) and 4.5 x 10(-6), respectively. Rotational transitions were observed from upsilon = 0 for the least abundant isotopic species to as high as upsilon = 51 for the main species. Owing to the high spectral resolution of the FTMW spectrometer, hyperfine structure from the nuclear electric quadrupole moment of (33)S was resolved for species containing this isotope, as was much smaller nuclear spin-rotation splitting for isotopic species involving (29)Si. By combining the measurements here with previously published microwave and infrared data in one global fit, an improved set of spectroscopic parameters for SiS has been derived which include several terms describing the breakdown of the Born-Oppenheimer approximation. With this parameter set, highly accurate rotational frequencies for this important astronomical molecule can now be predicted well into the terahertz region.

8.
J Mol Spectrosc ; 207(2): 216-223, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11397110

RESUMO

A high-resolution analysis of the {nu(2), nu(3)} and {nu(4), nu(6)} bands of the two isotopomers of chloryl fluoride F(35)ClO(2) and F(37)ClO(2) has been carried out for the first time using simultaneously infrared spectra recorded around 16&mgr;m and 26&mgr;m with a resolution of ca. 0.003 cm(-1) and microwave and submillimeter-wave transitions occurring within the vibrational states 2(1), 3(1), 4(1), and 6(1). Taking into account the Coriolis resonances which link the rotational levels of the {2(1), 3(1)} and the {4(1), 6(1)} interacting states, it was possible to reproduce very satisfactorily the observed transitions and to determine accurate vibrational energies and rotational constants for the upper states 2(1), 3(1), 4(1), and 6(1) of both the (35)Cl and (37)Cl isotopic species. Copyright 2001 Academic Press.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...