Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiologyopen ; 8(7): e00779, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30821109

RESUMO

The appearance of multi-drug resistant strains of malaria poses a major challenge to human health and validated drug targets are urgently required. To define a protein's function in vivo and thereby validate it as a drug target, highly specific tools are required that modify protein function with minimal cross-reactivity. While modern genetic approaches often offer the desired level of target specificity, applying these techniques is frequently challenging-particularly in the most dangerous malaria parasite, Plasmodium falciparum. Our hypothesis is that such challenges can be addressed by incorporating mutant proteins within oligomeric protein complexes of the target organism in vivo. In this manuscript, we provide data to support our hypothesis by demonstrating that recombinant expression of mutant proteins within P. falciparum leverages the native protein oligomeric state to influence protein function in vivo, thereby providing a rapid validation of potential drug targets. Our data show that interference with aspartate metabolism in vivo leads to a significant hindrance in parasite survival and strongly suggest that enzymes integral to aspartate metabolism are promising targets for the discovery of novel antimalarials.

2.
PLoS One ; 13(4): e0195011, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29694407

RESUMO

Malaria remains a major threat to human health, as strains resistant to current therapeutics are discovered. Efforts in finding new drug targets are hampered by the lack of sufficiently specific tools to provide target validation prior to initiating expensive drug discovery projects. Thus, new approaches that can rapidly enable drug target validation are of significant interest. In this manuscript we present the crystal structure of malate dehydrogenase from Plasmodium falciparum (PfMDH) at 2.4 Å resolution and structure-based mutagenic experiments interfering with the inter-oligomeric interactions of the enzyme. We report decreased thermal stability, significantly decreased specific activity and kinetic parameters of PfMDH mutants upon mutagenic disruption of either oligomeric interface. In contrast, stabilization of one of the interfaces resulted in increased thermal stability, increased substrate/cofactor affinity and hyperactivity of the enzyme towards malate production at sub-millimolar substrate concentrations. Furthermore, the presented data show that our designed PfMDH mutant could be used as specific inhibitor of the wild type PfMDH activity, as mutated PfMDH copies were shown to be able to self-incorporate into the native assembly upon introduction in vitro, yielding deactivated mutant:wild-type species. These data provide an insight into the role of oligomeric assembly in regulation of PfMDH activity and reveal that recombinant mutants could be used as probe tool for specific modification of the wild type PfMDH activity, thus offering the potential to validate its druggability in vivo without recourse to complex genetics or initial tool compounds. Such tool compounds often lack specificity between host or pathogen proteins (or are toxic in in vivo trials) and result in difficulties in assessing cause and effect-particularly in cases when the enzymes of interest possess close homologs within the human host. Furthermore, our oligomeric interference approach could be used in the future in order to assess druggability of other challenging human pathogen drug targets.


Assuntos
Antimaláricos/química , Descoberta de Drogas , Malato Desidrogenase/química , Plasmodium falciparum/enzimologia , Sequência de Aminoácidos , Antimaláricos/farmacologia , Sítios de Ligação , Sequência Conservada , Expressão Gênica , Humanos , Malato Desidrogenase/antagonistas & inibidores , Malato Desidrogenase/genética , Modelos Moleculares , Conformação Molecular , Mutação , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Ligação Proteica , Proteínas Recombinantes , Especificidade por Substrato
3.
Sci Rep ; 6: 22871, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26960569

RESUMO

Infections caused by the methicillin-resistant Staphylococcus aureus (MRSA) are today known to be a substantial threat for global health. Emerging multi-drug resistant bacteria have created a substantial need to identify and discover new drug targets and to develop novel strategies to treat bacterial infections. A promising and so far untapped antibiotic target is the biosynthesis of vitamin B1 (thiamin). Thiamin in its activated form, thiamin pyrophosphate, is an essential co-factor for all organisms. Therefore, thiamin analogous compounds, when introduced into the vitamin B1 biosynthetic pathway and further converted into non-functional co-factors by the bacterium can function as pro-drugs which thus block various co-factor dependent pathways. We characterized one of the key enzymes within the S. aureus vitamin B1 biosynthetic pathway, 5-(hydroxyethyl)-4-methylthiazole kinase (SaThiM; EC 2.7.1.50), a potential target for pro-drug compounds and analyzed the native structure of SaThiM and complexes with the natural substrate 5-(hydroxyethyl)-4-methylthiazole (THZ) and two selected substrate analogues.


Assuntos
Antibacterianos/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Pró-Fármacos/química , Staphylococcus aureus/enzimologia , Tiamina/biossíntese , Tiazóis/química , Vias Biossintéticas , Domínio Catalítico , Bases de Dados de Compostos Químicos , Resistência a Meticilina , Modelos Moleculares
4.
Med Chem ; 12(7): 655-661, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26732117

RESUMO

Two new limonoids, named rubescins D-E (1-2) along with eight known compounds, including five havanensin type limonoids, TS1 (3), TS3 (4), rubescins A-C (5-7) and three known phytosterols, ß-sitosterol, stigmasterol and its 3ß-O-glucopyranoside derivative were isolated from the roots and stem bark of Trichilia rubescens, collected from Cameroon. The structures of the new compounds were determined by detailed analyses of 1D and 2D NMR spectra, in combination with high-resolution mass spectrometry data and by comparison with related data from literature. Anti-plasmodial activities of some of the isolated limonoids 1, 2, 4, 6 and 7 were evaluated against erythrocytic stages of strain 3D7 Plasmodium falciparum. Compounds 2 and 4 exhibited significant anti-plasmodial in vitro activity with IC50 values of 1.13 and 0.79 µM, respectively.


Assuntos
Antimaláricos/farmacologia , Limoninas/farmacologia , Meliaceae/química , Antimaláricos/química , Antimaláricos/isolamento & purificação , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Eritrócitos/parasitologia , Humanos , Concentração Inibidora 50 , Limoninas/química , Limoninas/isolamento & purificação , Plasmodium falciparum/efeitos dos fármacos , Espectroscopia de Prótons por Ressonância Magnética
5.
Malar J ; 14: 54, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25651815

RESUMO

BACKGROUND: Plasmodium falciparum is the most pathogenic of the human malaria parasite species and a major cause of death in Africa. It's resistance to most of the current drugs accentuates the pressing need for new chemotherapies. Polyamine metabolism of the parasite is distinct from the human pathway making it an attractive target for chemotherapeutic development. Plasmodium falciparum spermidine synthase (PfSpdS) catalyzes the synthesis of spermidine and spermine. It is a major polyamine flux-determining enzyme and spermidine is a prerequisite for the post-translational activation of P. falciparum eukaryotic translation initiation factor 5A (elF5A). The most potent inhibitors of eukaryotic SpdS's are not specific for PfSpdS. METHODS: 'Dynamic' receptor-based pharmacophore models were generated from published crystal structures of SpdS with different ligands. This approach takes into account the inherent flexibility of the active site, which reduces the entropic penalties associated with ligand binding. Four dynamic pharmacophore models were developed and two inhibitors, (1R,4R)-(N1-(3-aminopropyl)-trans-cyclohexane-1,4-diamine (compound 8) and an analogue, N-(3-aminopropyl)-cyclohexylamine (compound 9), were identified. RESULTS: A crystal structure containing compound 8 was solved and confirmed the in silico prediction that its aminopropyl chain traverses the catalytic centre in the presence of the byproduct of catalysis, 5'-methylthioadenosine. The IC50 value of compound 9 is in the same range as that of the most potent inhibitors of PfSpdS, S-adenosyl-1,8-diamino-3-thio-octane (AdoDATO) and 4MCHA and 100-fold lower than that of compound 8. Compound 9 was originally identified as a mammalian spermine synthase inhibitor and does not inhibit mammalian SpdS. This implied that these two compounds bind in an orientation where their aminopropyl chains face the putrescine binding site in the presence of the substrate, decarboxylated S-adenosylmethionine. The higher binding affinity and lower receptor strain energy of compound 9 compared to compound 8 in the reversed orientation explained their different IC50 values. CONCLUSION: The specific inhibition of PfSpdS by compound 9 is enabled by its binding in the additional cavity normally occupied by spermidine when spermine is synthesized. This is the first time that a spermine synthase inhibitor is shown to inhibit PfSpdS, which provides new avenues to explore for the development of novel inhibitors of PfSpdS.


Assuntos
Antimaláricos/isolamento & purificação , Antimaláricos/farmacologia , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Plasmodium falciparum/enzimologia , Espermidina Sintase/antagonistas & inibidores , Antimaláricos/química , Inibidores Enzimáticos/química , Concentração Inibidora 50 , Simulação de Dinâmica Molecular , Ligação Proteica
6.
Bioorg Med Chem ; 22(6): 1832-7, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24565970

RESUMO

We have selectively synthesized by Pictet-Spengler condensation of tryptophan and pyridoxal the four stereoisomers of a pyridoxal ß-carboline derivative that was designed to inhibit the proliferation of Plasmodium falciparum. Biological investigation of the four compounds revealed that they all inhibit the growth of P. falciparum. With an IC50 value of 8 ± 1 µM, the highest inhibitory effect on the proliferation of the parasite was found for the 1,3-trans-substituted tetrahydro-ß-carboline that was obtained from d-tryptophan. Lower activity was found for its enantiomer, while the two diastereomeric cis-products were markedly less effective. Apparently a distinct spacial orientation of the carboxyl group of the substituted tetrahydropyridine unit of the compounds is needed for high activity, while the absolute configuration of the molecules is of lesser importance.


Assuntos
Carbolinas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Piridoxal/análogos & derivados , Carbolinas/síntese química , Carbolinas/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Estrutura Molecular , Plasmodium falciparum/citologia , Plasmodium falciparum/crescimento & desenvolvimento , Piridoxal/síntese química , Piridoxal/química , Piridoxal/farmacologia , Teoria Quântica , Estereoisomerismo , Relação Estrutura-Atividade
7.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 12): 2320-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24311574

RESUMO

Staphylococcus aureus TenA (SaTenA) is a thiaminase type II enzyme that catalyzes the deamination of aminopyrimidine, as well as the cleavage of thiamine into 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) and 5-(2-hydroxyethyl)-4-methylthiazole (THZ), within thiamine (vitamin B1) metabolism. Further, by analogy with studies of Bacillus subtilis TenA, SaTenA may act as a regulator controlling the secretion of extracellular proteases such as the subtilisin type of enzymes in bacteria. Thiamine biosynthesis has been identified as a potential drug target of the multi-resistant pathogen S. aureus and therefore all enzymes involved in the S. aureus thiamine pathway are presently being investigated in detail. Here, the structure of SaTenA, determined by molecular replacement and refined at 2.7 Šresolution to an R factor of 21.6% with one homotetramer in the asymmetric unit in the orthorhombic space group P212121, is presented. The tetrameric state of wild-type (WT) SaTenA was postulated to be the functional biological unit and was confirmed by small-angle X-ray scattering (SAXS) experiments in solution. To obtain insights into structural and functional features of the oligomeric SaTenA, comparative kinetic investigations as well as experiments analyzing the structural stability of the WT SaTenA tetramer versus a monomeric SaTenA mutant were performed.


Assuntos
Hidrolases/química , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/enzimologia , Humanos , Hidrolases/genética , Hidrolases/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Multimerização Proteica , Proteólise , Serina Proteases/metabolismo , Infecções Estafilocócicas/enzimologia , Staphylococcus aureus/química , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Subtilisina/metabolismo , Tiamina/metabolismo , Tripsina/metabolismo
8.
Nat Commun ; 4: 2060, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23804074

RESUMO

Thiamine is metabolized into an essential cofactor for several enzymes. Here we show that oxythiamine, a thiamine analog, inhibits proliferation of the malaria parasite Plasmodium falciparum in vitro via a thiamine-related pathway and significantly reduces parasite growth in a mouse malaria model. Overexpression of thiamine pyrophosphokinase (the enzyme that converts thiamine into its active form, thiamine pyrophosphate) hypersensitizes parasites to oxythiamine by up to 1,700-fold, consistent with oxythiamine being a substrate for thiamine pyrophosphokinase and its conversion into an antimetabolite. We show that parasites overexpressing the thiamine pyrophosphate-dependent enzymes oxoglutarate dehydrogenase and pyruvate dehydrogenase are up to 15-fold more resistant to oxythiamine, consistent with the antimetabolite inactivating thiamine pyrophosphate-dependent enzymes. Our studies therefore validate thiamine utilization as an antimalarial drug target and demonstrate that a single antimalarial can simultaneously target several enzymes located within distinct organelles.


Assuntos
Antimaláricos/farmacologia , Parasitos/genética , Tiamina/metabolismo , Animais , Animais Geneticamente Modificados , Antimaláricos/química , Western Blotting , Cromatografia Líquida de Alta Pressão , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Complexo Cetoglutarato Desidrogenase/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Modelos Biológicos , Oxitiamina/química , Oxitiamina/farmacologia , Parasitemia/enzimologia , Parasitemia/metabolismo , Parasitemia/parasitologia , Parasitos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Plasmodium falciparum/crescimento & desenvolvimento , Complexo Piruvato Desidrogenase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes , Tiamina Pirofosfoquinase/metabolismo , Tiamina/química , Tiamina Pirofosfato/metabolismo
9.
J Biol Chem ; 288(31): 22576-83, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23754276

RESUMO

A representative of a new class of potent antimalarials with an unknown mode of action was recently described. To identify the molecular target of this class of antimalarials, we employed a photo-reactive affinity capture method to find parasite proteins specifically interacting with the capture compound in living parasitized cells. The capture reagent retained the antimalarial properties of the parent molecule (ACT-213615) and accumulated within parasites. We identified several proteins interacting with the capture compound and established a functional interaction between ACT-213615 and PfMDR1. We surmise that PfMDR1 may play a role in the antimalarial activity of the piperazine-containing compound ACT-213615.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Antimaláricos/farmacologia , Plasmodium falciparum/fisiologia , Raios Ultravioleta , Animais
10.
Mol Biochem Parasitol ; 188(1): 63-77, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23500968

RESUMO

Malaria still poses one of the most serious threats to human health worldwide and the prevailing lack of effective, clinically licensed, vaccines means that prophylaxis and treatment depend heavily on a small number of compounds whose efficacies are progressively compromised at varying rates by the inevitable emergence of drug-resistant parasite populations. Of these antimalarials, those inhibiting steps in folate metabolism, along with chloroquine, are the oldest synthetic compounds, with origins dating back three-quarters of a century. Despite widespread parasite resistance, the antifolates still play an important role in malaria control, and our understanding of the underlying mechanisms of folate metabolism and genesis of drug resistance has increased considerably over the last twenty years. Folate de novo synthesis in the parasite, interconversion of active folate derivatives and their utilisation as multifunctional cofactors involve numerous enzymes, although only two of these have ever served as targets of clinical antimalarial inhibitors. The current application of antifolates, resistance to this class of drugs, new insights into folate metabolism in the parasite, its potential for providing novel targets of inhibition and some of the questions that are still outstanding are reviewed here.


Assuntos
Ácido Fólico/metabolismo , Redes e Vias Metabólicas/genética , Plasmodium/genética , Plasmodium/metabolismo , Antimaláricos/isolamento & purificação , Antimaláricos/farmacologia , Transporte Biológico/efeitos dos fármacos , Resistência a Medicamentos , Antagonistas do Ácido Fólico/isolamento & purificação , Antagonistas do Ácido Fólico/farmacologia , Humanos , Pterinas/metabolismo
11.
Biochem J ; 449(1): 175-87, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23039077

RESUMO

Malaria tropica is a devastating infectious disease caused by Plasmodium falciparum. This parasite synthesizes vitamin B6 de novo via the PLP (pyridoxal 5'-phosphate) synthase enzymatic complex consisting of PfPdx1 and PfPdx2 proteins. Biosynthesis of PLP is largely performed by PfPdx1, ammonia provided by PfPdx2 subunits is condensed together with R5P (D-ribose 5-phosphate) and G3P (DL-glyceraldehyde 3-phosphate). PfPdx1 accommodates both the R5P and G3P substrates and intricately co-ordinates the reaction mechanism, which is composed of a series of imine bond formations, leading to the production of PLP. We demonstrate that E4P (D-erythrose 4-phosphate) inhibits PfPdx1 in a dose-dependent manner. We propose that the acyclic phospho-sugar E4P, with a C1 aldehyde group similar to acyclic R5P, could interfere with R5P imine bond formations in the PfPdx1 reaction mechanism. Molecular docking and subsequent screening identified the E4P hydrazide analogue 4PEHz (4-phospho-D-erythronhydrazide), which selectively inhibited PfPdx1 with an IC50 of 43 µM. PfPdx1 contained in the heteromeric PLP synthase complex was shown to be more sensitive to 4PEHz and was inhibited with an IC50 of 16 µM. Moreover, the compound had an IC50 value of 10 µM against cultured P. falciparum intraerythrocytic parasites. To analyse further the selectivity of 4PEHz, transgenic cell lines overexpressing PfPdx1 and PfPdx2 showed that additional copies of the protein complex conferred protection against 4PEHz, indicating that the PLP synthase is directly affected by 4PEHz in vivo. These PfPdx1 inhibitors represent novel lead scaffolds which are capable of targeting PLP biosynthesis, and we propose this as a viable strategy for the development of new therapeutics against malaria.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Complexo Piruvato Desidrogenase/antagonistas & inibidores , Animais , Antimaláricos/química , Humanos , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Plasmodium falciparum/fisiologia , Complexo Piruvato Desidrogenase/química , Especificidade por Substrato , Fosfatos Açúcares/química , Fosfatos Açúcares/farmacologia
12.
Cytometry A ; 81(8): 698-703, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22736452

RESUMO

The malaria parasite Plasmodium falciparum proliferates within human erythrocytes and is thereby exposed to a variety of reactive oxygen species (ROS) such as hydrogen peroxide, hydroxyl radical, superoxide anion, and highly reactive singlet oxygen ((1)O(2)). While most ROS are already well studied in the malaria parasite, singlet oxygen has been neglected to date. In this study we visualized the generation of (1)O(2) by live cell fluorescence microscopy using 3-(p-aminophenyl) fluorescein as an indicator dye. While (1) O(2) is found restrictively in the parasite, its amount varies during erythrocytic schizogony. Since the photosensitizer cercosporin generates defined amounts of (1)O(2) we have established a new cytometric method that allows the stage specific quantification of (1)O(2). Therefore, the parasites were first classified into three main stages according to their respective pixel-area of 200-600 pixels for rings, 700-1,200 pixels for trophozoites and 1,400-2,500 pixels for schizonts. Interestingly the highest mean concentration of endogenous (1)O(2) of 0.34 nM is found in the trophozoites stage, followed by 0.20 nM (ring stage) and 0.10 nM (schizont stage) suggesting that (1)O(2) derives predominantly from the digestion of hemoglobin.


Assuntos
Citometria de Fluxo/métodos , Malária/parasitologia , Parasitos/metabolismo , Plasmodium falciparum/metabolismo , Oxigênio Singlete/metabolismo , Animais , Calibragem , Humanos , Estágios do Ciclo de Vida/efeitos dos fármacos , Parasitos/efeitos dos fármacos , Parasitos/crescimento & desenvolvimento , Perileno/análogos & derivados , Perileno/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento
13.
Artigo em Inglês | MEDLINE | ID: mdl-22684064

RESUMO

The expression, purification, crystallization and preliminary X-ray diffraction characterization of malate dehydrogenase (MDH) from the malarial parasite Plasmodium falciparum (PfMDH) are reported. In order to gain a deeper understanding of the function and role of PfMDH, the protein was purified to homogeneity. The purified protein crystallized in space group P1, with unit-cell parameters a = 72, b = 157, c = 159 Å, α = 105, ß = 101, γ = 95°. The resulting crystals diffracted to a maximal resolution of 2.24 Å and the structure has been solved by molecular replacement, with 16 monomers in the asymmetric unit. The 16 monomers are arranged into four independent tetramers, in agreement with previous reports demonstrating the tetrameric solution state of PfMDH. The X-ray structure of PfMDH is expected to clarify the differences in catalysis by PfMDH compared with other MDH family members and to provide a basis for the structure-based design of specific PfMDH inhibitors as well as general MDH inhibitors.


Assuntos
Malato Desidrogenase/química , Plasmodium falciparum/enzimologia , Cristalização , Cristalografia por Raios X
14.
Curr Drug Metab ; 13(3): 332-6, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22455555

RESUMO

In this mini-review we briefly examine and summarize evidence on the role of the plasmodial aspartate aminotransferase (AspAT) of the malarial parasite. Recent data have provided information on the products of the purine salvage pathway as well as the glycolytic and oxidative phosphorylation pathways, suggesting that the reaction catalyzed by AspAT is an essential step in all these biochemical processes. While the biological role of the oxidative phosphorylation cycle still remains to be demonstrated, the presence of a single protein that is functional in multiple pathways (i.e. amino acid/purine/pyrimidine biosynthesis and carbohydrate metabolism) provides a high potential for the development of novel strategies to combat the spread of multi-drug resistant malaria.


Assuntos
Aspartato Aminotransferases/metabolismo , Malária Falciparum/parasitologia , Plasmodium falciparum/metabolismo , Aminoácidos/biossíntese , Antimaláricos/farmacologia , Metabolismo dos Carboidratos , Resistência a Medicamentos , Metabolismo Energético , Humanos , Malária Falciparum/tratamento farmacológico , Fosforilação Oxidativa , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Purinas/biossíntese , Pirimidinas/biossíntese
15.
Biochem J ; 443(2): 397-405, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22242896

RESUMO

The malaria parasite Plasmodium falciparum is able to synthesize de novo PLP (pyridoxal 5'-phosphate), the active form of vitamin B6. In the present study, we have shown that the de novo synthesized PLP is used by the parasite to detoxify 1O2 (singlet molecular oxygen), a highly destructive reactive oxygen species arising from haemoglobin digestion. The formation of 1O2 and the response of the parasite were monitored by live-cell fluorescence microscopy, by transcription analysis and by determination of PLP levels in the parasite. Pull-down experiments of transgenic parasites overexpressing the vitamin B6-biosynthetic enzymes PfPdx1 and PfPdx2 clearly demonstrated an interaction of the two proteins in vivo which results in an elevated PLP level from 12.5 µM in wild-type parasites to 36.6 µM in the PfPdx1/PfPdx2-overexpressing cells and thus to a higher tolerance towards 1O2. In contrast, by applying the dominant-negative effect on the cellular level using inactive mutants of PfPdx1 and PfPdx2, P. falciparum becomes susceptible to 1O2. Our results demonstrate clearly the crucial role of vitamin B6 biosynthesis in the detoxification of 1O2 in P. falciparum. Besides the known role of PLP as a cofactor of many essential enzymes, this second important task of the vitamin B6 de novo synthesis as antioxidant emphasizes the high potential of this pathway as a target of new anti-malarial drugs.


Assuntos
Estresse Oxidativo , Plasmodium falciparum/metabolismo , Vitamina B 6/biossíntese , Dados de Sequência Molecular , Transferases de Grupos Nitrogenados/genética , Transferases de Grupos Nitrogenados/metabolismo , Perileno/análogos & derivados , Perileno/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Regulação para Cima
16.
J Mol Biol ; 405(4): 956-71, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21087616

RESUMO

Aspartate aminotransferases (AspATs; EC 2.6.1.1) catalyze the conversion of aspartate and α-ketoglutarate into oxaloacetate and glutamate and are key enzymes in the nitrogen metabolism of all organisms. Recent findings suggest that the plasmodial enzyme [Plasmodium falciparum aspartate aminotransferase (PfAspAT)] may also play a pivotal role in energy metabolism and in the de novo biosynthesis of pyrimidines. However, while PfAspAT is a potential drug target, the high homology between the active sites of currently available AspAT structures hinders the development of specific inhibitors of these enzymes. In this article, we report the X-ray structure of the PfAspAT homodimer at a resolution of 2.8 Å. While the overall fold is similar to the currently available structures of other AspATs, the structure presented shows a significant divergence in the conformation of the N-terminal residues. Deletion of these divergent PfAspAT N-terminal residues results in a loss of activity for the recombinant protein, and addition of a peptide containing these 13 N-terminal residues results in inhibition both in vitro and in a lysate isolated from cultured parasites, while the activity of human cytosolic AspAT is unaffected. The finding that the divergent N-terminal amino acids of PfAspAT play a role in catalytic activity indicates that specific inhibition of the enzyme may provide a lead for the development of novel compounds in the treatment of malaria. We also report on the localization of PfAspAT to the parasite cytosol and discuss the implications of the role of PfAspAT in the supply of malate to the parasite mitochondria.


Assuntos
Aspartato Aminotransferases/antagonistas & inibidores , Aspartato Aminotransferases/química , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Sequência de Aminoácidos , Animais , Antimaláricos/farmacologia , Aspartato Aminotransferases/genética , Sequência de Bases , Cristalografia por Raios X , Citosol/enzimologia , Primers do DNA/genética , DNA de Protozoário/genética , Dimerização , Inibidores Enzimáticos/farmacologia , Humanos , Técnicas In Vitro , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Modelos Moleculares , Dados de Sequência Molecular , Plasmodium falciparum/genética , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Eletricidade Estática
17.
Future Microbiol ; 5(12): 1857-73, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21155666

RESUMO

Malaria represents one of the most serious threats to human health worldwide, and preventing and curing this parasitic disease still depends predominantly on the administration of a small number of drugs whose efficacy is continually threatened and eroded by the emergence of drug-resistant parasite populations. This has an enormous impact on the mortality and morbidity resulting from malaria infection, especially in sub-Saharan Africa, where the lethal human parasite species Plasmodium falciparum accounts for approximately 90% of deaths recorded globally. Successful treatment of uncomplicated malaria is now highly dependent on artemisinin-based combination therapies. However, the first cases of artemisinin-resistant field isolates have been reported recently and potential replacement antimalarials are only in the developmental stages. Here, we summarize recent progress in tackling the problem of parasite resistance and discuss the underlying molecular mechanisms that confer resistance to current antimalarial agents as far as they are known, understanding of which should assist in the rational development of new drugs and the more effective deployment of older ones.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/uso terapêutico , Artemisininas/farmacologia , Atovaquona/farmacologia , Antagonistas do Ácido Fólico/farmacologia , Humanos , Malária/tratamento farmacológico , Quinolinas/farmacologia , Quinolinas/uso terapêutico
18.
Malar J ; 9: 351, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21129192

RESUMO

BACKGROUND: The folate pathway enzyme serine hydroxymethyltransferase (SHMT) converts serine to glycine and 5,10-methylenetetrahydrofolate and is essential for the acquisition of one-carbon units for subsequent transfer reactions. 5,10-methylenetetrahydrofolate is used by thymidylate synthase to convert dUMP to dTMP for DNA synthesis. In Plasmodium falciparum an enzymatically functional SHMT (PfSHMTc) and a related, apparently inactive isoform (PfSHMTm) are found, encoded by different genes. Here, patterns of localization of the two isoforms during the parasite erythrocytic cycle are investigated. METHODS: Polyclonal antibodies were raised to PfSHMTc and PfSHMTm, and, together with specific markers for the mitochondrion and apicoplast, were employed in quantitative confocal fluorescence microscopy of blood-stage parasites. RESULTS: As well as the expected cytoplasmic occupancy of PfSHMTc during all stages, localization into the mitochondrion and apicoplast occurred in a stage-specific manner. Although early trophozoites lacked visible organellar PfSHMTc, a significant percentage of parasites showed such fluorescence during the mid-to-late trophozoite and schizont stages. In the case of the mitochondrion, the majority of parasites in these stages at any given time showed no marked PfSHMTc fluorescence, suggesting that its occupancy of this organelle is of limited duration. PfSHMTm showed a distinctly more pronounced mitochondrial location through most of the erythrocytic cycle and GFP-tagging of its N-terminal region confirmed the predicted presence of a mitochondrial signal sequence. Within the apicoplast, a majority of mitotic schizonts showed a marked concentration of PfSHMTc, whose localization in this organelle was less restricted than for the mitochondrion and persisted from the late trophozoite to the post-mitotic stages. PfSHMTm showed a broadly similar distribution across the cycle, but with a distinctive punctate accumulation towards the ends of elongating apicoplasts. In very late post-mitotic schizonts, both PfSHMTc and PfSHMTm were concentrated in the central region of the parasite that becomes the residual body on erythrocyte lysis and merozoite release. CONCLUSIONS: Both PfSHMTc and PfSHMTm show dynamic, stage-dependent localization among the different compartments of the parasite and sequence analysis suggests they may also reversibly associate with each other, a factor that may be critical to folate cofactor function, given the apparent lack of enzymic activity of PfSHMTm.


Assuntos
Glicina Hidroximetiltransferase/análise , Plasmodium falciparum/química , Plasmodium falciparum/enzimologia , Isoformas de Proteínas/análise , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Organelas/química , Organelas/enzimologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-20383010

RESUMO

Aspartate aminotransferases (EC 2.6.1.1) catalyse the conversion of aspartate and alpha-ketoglutarate to oxaloacetate and glutamate in a reversible manner. Thus, the aspartate aminotransferase of Plasmodium falciparum (PfAspAT) plays a central role in the transamination of amino acids. Recent findings suggest that PfAspAT may also play a pivotal role in energy metabolism and the de novo biosynthesis of pyrimidines. While therapeutics based upon the inhibition of other proteins in these pathways are already used in the treatment of malaria, the advent of multidrug-resistant strains has limited their efficacy. The presence of PfAspAT in these pathways may offer additional opportunities for the development of novel therapeutics. In order to gain a deeper understanding of the function and role of PfAspAT, it has been expressed and purified to homogeneity. The successful crystallization of PfAspAT, the collection of a 2.8 A diffraction data set and initial attempts to solve the structure using molecular replacement are reported.


Assuntos
Aspartato Aminotransferases/química , Plasmodium falciparum/enzimologia , Aspartato Aminotransferases/isolamento & purificação , Cristalização , Cristalografia por Raios X
20.
Cell Microbiol ; 12(5): 677-91, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20070315

RESUMO

As an intracellular proliferating parasite, Plasmodium falciparum exploits the human host to acquire nutrients. However, nutrients such as nucleotides and cofactors are mostly phosphorylated in the host cell cytosol and thus have to be dephosphorylated in order to be taken up by the parasite. Here we report the functional characterization of a unique secreted phosphatase in P. falciparum, which is expressed throughout the developmental stages in the red blood cell. We show that this enzyme, formerly described as anchoring glideosome-associated protein 50 (GAP50), reveals a broad substrate profile with preference for di- and triphosphates at pH 5-7. Bioinformatic studies of the protein sequence identified an N-terminal signal anchor (SA) as well as a C-terminal transmembrane domain. By means of live microscopy of parasites transfected with GFP-fusions of this secreted acid phosphatase (PfSAP), we demonstrate that PfSAP enters the secretory pathway en route to the parasite periphery - mediated by SA - and is subsequently engulfed into the food vacuole. We corroborate this with independent data where acid phosphatase activity is visualized in close proximity to hemozoin. The biochemical as well as the trafficking results support the proposed role of PfSAP in the acquisition of host nutrients by dephosphorylation.


Assuntos
Fosfatase Ácida/metabolismo , Eritrócitos/parasitologia , Proteínas de Membrana/metabolismo , Plasmodium falciparum/enzimologia , Plasmodium falciparum/metabolismo , Sequência de Aminoácidos , Animais , Biologia Computacional , Humanos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Fosfatos/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Alinhamento de Sequência , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...