Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 156: 213711, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061158

RESUMO

Hollow vaterite microspheres are important materials for biomedical applications such as drug delivery and regenerative medicine owing to their biocompatibility, high specific surface area, and ability to encapsulate a large number of bioactive molecules and compounds. We demonstrated that hollow vaterite microspheres are produced by an Escherichia coli strain engineered with a urease gene cluster from the ureolytic bacteria Sporosarcina pasteurii in the presence of bovine serum albumin. We characterized the 3D nanoscale morphology of five biogenic hollow vaterite microspheres using 3D high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) tomography. Using automated high-throughput HAADF-STEM imaging across several sample tilt orientations, we show that the microspheres evolved from a smaller more ellipsoidal shape to a larger more spherical shape while the internal hollow core increased in size and remained relatively spherical, indicating that the microspheres produced by this engineered strain likely do not contain the bacteria. The statistical 3D morphology information demonstrates the potential for using biogenic calcium carbonate mineralization to produce hollow vaterite microspheres with controlled morphologies. STATEMENT OF SIGNIFICANCE: The nanoscale 3D structures of biomaterials determine their physical, chemical, and biological properties, however significant efforts are required to obtain a statistical understanding of the internal 3D morphology of materials without damaging the structures. In this study, we developed a non-destructive, automated technique that allows us to understand the nanoscale 3D morphology of many unique hollow vaterite microspheres beyond the spectroscopy methods that lack local information and microscopy methods that cannot interrogate the full 3D structure. The method allowed us to quantitatively correlate the external diameters and aspect ratios of vaterite microspheres with their hollow internal structures at the nanoscale. This work demonstrates the opportunity to use automated transmission electron microscopy to characterize nanoscale 3D morphologies of many biomaterials and validate the chemical and biological functionality of these materials.


Assuntos
Carbonato de Cálcio , Escherichia coli , Carbonato de Cálcio/química , Microscopia Eletrônica de Varredura , Microesferas , Escherichia coli/genética , Microscopia Eletrônica de Transmissão e Varredura , Materiais Biocompatíveis
2.
Nat Commun ; 10(1): 4028, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492904

RESUMO

Crosstalk is a major challenge to engineering sophisticated synthetic gene networks. A common approach is to insulate signal-transduction pathways by minimizing molecular-level crosstalk between endogenous and synthetic genetic components, but this strategy can be difficult to apply in the context of complex, natural gene networks and unknown interactions. Here, we show that synthetic gene networks can be engineered to compensate for crosstalk by integrating pathway signals, rather than by pathway insulation. We demonstrate this principle using reactive oxygen species (ROS)-responsive gene circuits in Escherichia coli that exhibit concentration-dependent crosstalk with non-cognate ROS. We quantitatively map the degree of crosstalk and design gene circuits that introduce compensatory crosstalk at the gene network level. The resulting gene network exhibits reduced crosstalk in the sensing of the two different ROS. Our results suggest that simple network motifs that compensate for pathway crosstalk can be used by biological networks to accurately interpret environmental signals.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Redes Reguladoras de Genes , Transdução de Sinais/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Modelos Genéticos , Oxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Repressoras/genética
3.
ACS Synth Biol ; 7(10): 2403-2412, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30176724

RESUMO

RNA interference (RNAi) is widely used as a research tool for studying biological systems and implementing artificial genetic circuits that function by modulating RNA concentrations. Here we engineered Saccharomyces cerevisiae containing a heterologous Saccharomyces castelli RNAi system as a test-bed for RNAi-based circuits. Unlike prior approaches, we describe a strategy that leverages repeat-structured siRNA precursors with incrementally sized stems formed from 23 bp-repeats to achieve modular RNAi-based gene regulation. These enable repression strength to be tuned in a systematic manner by changing the size of the siRNA precursor hairpin stem, without modifying the number or sequence of target sites in the target RNA. We demonstrate that this hairpin-based regulation is able to target both cytoplasmic and nuclear localized RNAs and is stable over extended growth periods. This platform enables the targeting of cellular RNAs as a tunable regulatory layer for sophisticated gene circuits in Saccharomyces cerevisiae.


Assuntos
Interferência de RNA , RNA Interferente Pequeno/metabolismo , Saccharomyces cerevisiae/genética , Regiões 3' não Traduzidas , Biblioteca Gênica , Redes Reguladoras de Genes , Conformação de Ácido Nucleico , Fases de Leitura Aberta/genética , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...