Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1084, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316781

RESUMO

When an inverted ensemble of atoms is tightly packed on the scale of its emission wavelength or when the atoms are collectively strongly coupled to a single cavity mode, their dipoles will align and decay rapidly via a superradiant burst. However, a spread-out dipole phase distribution theory predicts a required minimum threshold of atomic excitation for superradiance to occur. Here we experimentally confirm this predicted threshold for superradiant emission on a narrow optical transition when exciting the atoms transversely and show how to take advantage of the resulting sub- to superradiant transition. A π/2-pulse places the atoms in a subradiant state, protected from collective cavity decay, which we exploit during the free evolution period in a corresponding Ramsey pulse sequence. The final excited state population is read out via superradiant emission from the inverted atomic ensemble after a second π/2-pulse, and with minimal heating this allows for multiple Ramsey sequences within one experimental cycle. Our scheme is an innovative approach to atomic state readout characterized by its speed, simplicity, and highly directional emission of signal photons. It demonstrates the potential of sensors using collective effects in cavity-coupled quantum emitters.

2.
Opt Lett ; 42(21): 4315-4318, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29088152

RESUMO

The evanescent field surrounding nanoscale optical waveguides offers an efficient interface between light and mesoscopic ensembles of neutral atoms. However, the thermal motion of trapped atoms, combined with the strong radial gradients of the guided light, leads to a time-modulated coupling between atoms and the light mode, thus giving rise to additional noise and motional dephasing of collective states. Here, we present a dipole force free scheme for coupling of the radial motional states, utilizing the strong intensity gradient of the guided mode and demonstrate all-optical coupling of the cesium hyperfine ground states and motional sideband transitions. We utilize this to prolong the trap lifetime of an atomic ensemble by Raman sideband cooling of the radial motion which, to the best of our knowledge, has not been demonstrated in nano-optical structures previously. This Letter points towards full and independent control of internal and external atomic degrees of freedom using guided light modes only.

3.
Sci Rep ; 6: 29638, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27417378

RESUMO

Magnetic fields generated by human and animal organs, such as the heart, brain and nervous system carry information useful for biological and medical purposes. These magnetic fields are most commonly detected using cryogenically-cooled superconducting magnetometers. Here we present the first detection of action potentials from an animal nerve using an optical atomic magnetometer. Using an optimal design we are able to achieve the sensitivity dominated by the quantum shot noise of light and quantum projection noise of atomic spins. Such sensitivity allows us to measure the nerve impulse with a miniature room-temperature sensor which is a critical advantage for biomedical applications. Positioning the sensor at a distance of a few millimeters from the nerve, corresponding to the distance between the skin and nerves in biological studies, we detect the magnetic field generated by an action potential of a frog sciatic nerve. From the magnetic field measurements we determine the activity of the nerve and the temporal shape of the nerve impulse. This work opens new ways towards implementing optical magnetometers as practical devices for medical diagnostics.


Assuntos
Anuros/fisiologia , Magnetismo/instrumentação , Nervo Isquiático/fisiologia , Potenciais de Ação , Animais , Pontos Quânticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...