Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866384

RESUMO

After RNAi was first discovered over 20 years ago, siRNA-based therapeutics are finally becoming reality. However, the delivery of siRNA has remained a challenge. In our previous research, we found that spermine-based poly(ß-amino ester)s are very promising for siRNA delivery. However, the role of hydrophobic modification in siRNA delivery of spermine-based poly(ß-amino ester)s is not fully understood yet. In the current work, we synthesized spermine-based poly(ß-amino ester)s with different percentages of oleylamine side chains, named P(SpOABAE). The chemical structures of the polymers were characterized by 1H NMR. The polymers showed efficient siRNA encapsulation determined by SYBR Gold assays. The hydrodynamic diameters of the P(SpOABAE) polyplexes from charge ratio N/P 1 to 20 were 30-100 nm except for aggregation phenomena observed at N/P 3. Morphology of the polyplexes was visualized by atomic force microscopy, and cellular uptake was determined by flow cytometry in H1299 cells, where all the polyplexes showed significantly higher cellular uptake than hyperbranched polyethylenimine (25 kDa). The most hydrophobic P(SpOABAE) polyplexes were able to achieve more than 90% GFP knockdown in H1299/eGFP cells. The fact that gene silencing efficacy increased with hydrophobicity but cellular uptake was affected by both charge and hydrophobic interactions highlights the importance of endosomal escape. For pulmonary administration and improved storage stability, the polyplexes were spray-dried. Results confirmed the maintained siRNA activity after storage for 3 months at room temperature, indicating potential for dry powder inhalation.

2.
Methods Mol Biol ; 2822: 187-203, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38907920

RESUMO

The utilization of drug delivery systems, such as lipid nanoparticles and polyplexes/micelleplexes, has shown promise in intracellularly delivering nucleic acids for addressing various diseases. Accurate quantification of the nucleic acid cargo within nanoparticles is essential for the development of safe and effective nanomedicines. Currently, the RiboGreen and SYBR Gold methods are regarded as standard techniques for the precise quantification of RNA in lipid nanoparticles and polyplexes/micelleplexes, respectively. In this chapter, we present a comprehensive protocol for the precise evaluation of the encapsulation efficiency in such formulations using these methods. Additionally, we offer detailed instructions for nanoparticle preparation, characterization, and a comparative analysis of the sensitivity of both methods in quantifying unencapsulated siRNA.


Assuntos
Nanopartículas , RNA , Nanopartículas/química , RNA/análise , RNA/química , Corantes Fluorescentes/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/química , Espectrometria de Fluorescência/métodos
3.
Eur J Pharm Biopharm ; 198: 114242, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38442794

RESUMO

Asthma impacts over 300 million patients globally, with significant health implications, especially in cases of its allergic subtype. The disease is characterized by a complex interplay of airway inflammation and immune responses, often mediated by Th2 cell-related cytokines. In this study, we engineered lipid nanoparticles (LNPs) to specifically deliver therapeutic siRNA via the transferrin receptor to T cells. Strain-promoted azide-alkyne cycloaddition (SPAAC) was employed for the conjugation of transferrin ligands to PEGylated lipids in the LNPs, with the goal of enhancing cellular uptake and gene knockdown. The obtained LNPs exhibited characteristics that make them suitable for pulmonary delivery. Using methods such as nanoparticle tracking analysis (NTA) and enzyme-linked immunosorbent assay (ELISA), we determined the average number of transferrin molecules bound to individual LNPs. Additionally, we found that cellular uptake was ligand-dependent, achieving a GATA3 knockdown of more than 50% in relevant in vitro and ex vivo models. Notably, our findings highlight the limitations inherent to modifying the surface of LNPs, particularly with regard to their targeting capabilities. This work paves the way for future research aimed at optimizing targeted LNPs for the treatment of immunologic diseases such as allergic asthma.


Assuntos
Asma , Lipossomos , Nanopartículas , Humanos , Linfócitos T , Asma/metabolismo , RNA Interferente Pequeno/metabolismo , Transferrinas/metabolismo
4.
Handb Exp Pharmacol ; 284: 313-328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38177399

RESUMO

Respiratory diseases are a major concern in public health, impacting a large population worldwide. Despite the availability of therapies that alleviate symptoms, selectively addressing the critical points of pathopathways remains a major challenge. Innovative formulations designed for reaching these targets within the airways, enhanced selectivity, and prolonged therapeutic effects offer promising solutions. To provide insights into the specific medical requirements of chronic respiratory diseases, the initial focus of this chapter is directed on lung physiology, emphasizing the significance of lung barriers. Current treatments involving small molecules and the potential of gene therapy are also discussed. Additionally, we will explore targeting approaches, with a particular emphasis on nanoparticles, comparing targeted and non-targeted formulations for pulmonary administration. Finally, the potential of inhaled sphingolipids in the context of respiratory diseases is briefly discussed, highlighting their promising prospects in the field.


Assuntos
Pneumopatias , Doenças Respiratórias , Humanos , Sistemas de Liberação de Medicamentos , Pneumopatias/tratamento farmacológico , Pulmão , Administração por Inalação
5.
J Control Release ; 354: 305-315, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36634709

RESUMO

GATA3 gene silencing in activated T cells displays a promising option to early-on undermine pathological pathways in the disease formation of allergic asthma. The central transcription factor of T helper 2 (Th2) cell cytokines IL-4, IL-5, and IL-13 plays a major role in immune and inflammatory cascades underlying asthmatic processes in the airways. Pulmonary delivery of small interfering RNAs (siRNA) to induce GATA3 knockdown within disease related T cells of asthmatic lungs via RNA interference (RNAi) presents an auspicious base to realize this strategy, however, still faces some major hurdles. Main obstacles for successful siRNA delivery in general comprise stability and targeting issues, while in addition the transfection of T cells presents a particularly challenging task itself. In previous studies, we have developed and advanced an eligible siRNA delivery system composed of polyethylenimine (PEI) as polycationic carrier, transferrin (Tf) as targeting ligand and melittin (Mel) as endosomolytic agent. Resulting Tf-Mel-PEI polyplexes exhibited ideal characteristics for targeted siRNA delivery to activated T cells and achieved efficient and sequence-specific gene knockdown in vitro. In this work, the therapeutic potential of this carrier system was evaluated in an optimized cellular model displaying the activated status of asthmatic T cells. Moreover, a suitable siRNA sequence combination was found for effective gene silencing of GATA3. To confirm the translatability of our findings, Tf-Mel-PEI polyplexes were additionally tested ex vivo in activated human precision-cut lung slices (PCLS). Here, the formulation showed a safe profile as well as successful delivery to the lung epithelium with 88% GATA3 silencing in lung explants. These findings support the feasibility of Tf-Mel-PEI as siRNA delivery system for targeted gene knockdown in activated T cells as a potential novel therapy for allergic asthma.


Assuntos
Asma , Pulmão , Humanos , RNA Interferente Pequeno , RNA de Cadeia Dupla , Interferência de RNA , Polietilenoimina , Transferrina , Fator de Transcrição GATA3/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...