Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 99(4-1): 042501, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31108703

RESUMO

Motivated by the observation of the storage of excess elastic free energy, prestress, in cross-linked semiflexible networks, we consider the problem of the conformational statistics of a single semiflexible polymer in a quenched random potential. The random potential, which represents the effect of cross-linking to other filaments, is assumed to have a finite correlation length ξ and mean strength V_{0}. We examine statistical distribution of curvature in filament with thermal persistence length ℓ_{P} and length L_{0} in the limit in which ℓ_{P}≫L_{0}. We compare our theoretical predictions to finite-element Brownian dynamics simulations. Finally, we comment on the validity of replica field techniques in addressing these questions.

2.
Phys Rev E ; 94(3-1): 032505, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27739853

RESUMO

Fluctuation-induced interactions are an important organizing principle in a variety of soft matter systems. We investigate the role of fluctuation-based or thermal Casimir interactions between cross linkers in a semiflexible network. One finds that, by integrating out the polymer degrees of freedom, there is an attractive logarithmic potential between nearest-neighbor cross linkers in a bundle, with a significantly weaker next-nearest-neighbor interaction. Here we show that a one-dimensional gas of these strongly interacting linkers in equilibrium with a source of unbound ones admits a discontinuous phase transition between a sparsely and a densely bound bundle. This discontinuous transition induced by the long-ranged nature of the Casimir interaction allows for a similarly abrupt structural transition in semiflexible filament networks between a low cross linker density isotropic phase and a higher cross link density bundle network. We support these calculations with the results of finite element Brownian dynamics simulations of semiflexible filaments and transient cross linkers.

3.
Proc Math Phys Eng Sci ; 472(2185): 20150555, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26997891

RESUMO

Molecular motors are proteins that excessively increase the efficiency of subcellular transport processes. They allow for cell division, nutrient transport and even macroscopic muscle movement. In order to understand the effect of motors in large biopolymer networks, e.g. the cytoskeleton, we require a suitable model of a molecular motor. In this contribution, we present such a model based on a geometrically exact beam finite-element formulation. We discuss the numerical model of a non-processive motor such as myosin II, which interacts with actin filaments. Based on experimental data and inspired by the theoretical understanding offered by the power-stroke model and the swinging-cross-bridge model, we parametrize our numerical model in order to achieve the effect that a physiological motor has on its cargo. To this end, we introduce the mechanical and mathematical foundations of the model, then discuss its calibration, prove its usefulness by conducting finite-element simulations of actin-myosin motility assays and assess the influence of motors on the rheology of semi-flexible biopolymer networks.

4.
Phys Rev Lett ; 112(23): 238102, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24972229

RESUMO

We present a theoretical and computational analysis of the rheology of networks made up of bundles of semiflexible filaments bound by transient cross-linkers. Such systems are ubiquitous in the cytoskeleton and can be formed in vitro using filamentous actin and various cross-linkers. We find that their high-frequency rheology is characterized by a scaling behavior that is quite distinct from that of networks of the well-studied single semiflexible filaments. This regime can be understood theoretically in terms of a length-scale-dependent bending modulus for bundles. Next, we observe new dissipative dynamics associated with the shear-induced disruption of the network at intermediate frequencies. Finally, at low frequencies, we encounter a region of non-Newtonian rheology characterized by power-law scaling. This regime is dominated by bundle dissolution and large-scale rearrangements of the network driven by equilibrium thermal fluctuations.


Assuntos
Actinas/química , Citoesqueleto/química , Modelos Químicos , Reologia/métodos , Proteínas de Transporte/química , Proteínas dos Microfilamentos/química , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...