Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomech Model Mechanobiol ; 22(3): 885-904, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36630014

RESUMO

Type B aortic dissection (TBAD) carries a high risk of complications, particularly with a partially thrombosed or patent false lumen (FL). Therefore, uncovering the risk factors leading to FL thrombosis is crucial to identify high-risk patients. Although studies have shown that morphological parameters of the dissected aorta are related to FL thrombosis, often conflicting results have been reported. We show that recent models of thrombus evolution in combination with sensitivity analysis methods can provide valuable insights into how combinations of morphological parameters affect the prospect of FL thrombosis. Based on clinical data, an idealized geometry of a TBAD is generated and parameterized. After implementing the thrombus model in computational fluid dynamics simulations, a global sensitivity analysis for selected morphological parameters is performed. We then introduce dimensionless morphological parameters to scale the results to individual patients. The sensitivity analysis demonstrates that the most sensitive parameters influencing FL thrombosis are the FL diameter and the size and location of intimal tears. A higher risk of partial thrombosis is observed when the FL diameter is larger than the true lumen diameter. Reducing the ratio of the distal to proximal tear size increases the risk of FL patency. In summary, these parameters play a dominant role in classifying morphologies into patent, partially thrombosed, and fully thrombosed FL. In this study, we point out the predictive role of morphological parameters for FL thrombosis in TBAD and show that the results are in good agreement with available clinical studies.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Trombose , Humanos , Aorta , Fatores de Risco , Resultado do Tratamento
2.
Int J Numer Method Biomed Eng ; 39(4): e3576, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35099851

RESUMO

Computational hemodynamics has received increasing attention recently. Patient-specific simulations require questionable model assumptions, for example, for geometry, boundary conditions, and material parameters. Consequently, the credibility of these simulations is much doubted, and rightly so. Yet, the matter may be addressed by a rigorous uncertainty quantification. In this contribution, we investigated the impact of blood rheological models on wall shear stress uncertainties in aortic hemodynamics obtained in numerical simulations. Based on shear-rheometric experiments, we compare the non-Newtonian Carreau model to a simple Newtonian model and a Reynolds number-equivalent Newtonian model. Bayesian Probability Theory treats uncertainties consistently and allows to include elusive assumptions such as the comparability of flow regimes. We overcome the prohibitively high computational cost for the simulation with a surrogate model, and account for the uncertainties of the surrogate model itself, too. We have two main findings: (1) The Newtonian models mostly underestimate the uncertainties as compared to the non-Newtonian model. (2) The wall shear stresses of specific persons cannot be distinguished due to largely overlapping uncertainty bands, implying that a more precise determination of person-specific blood rheological properties is necessary for person-specific simulations. While we refrain from a general recommendation for one rheological model, we have quantified the error of the uncertainty quantification associated with these modeling choices.


Assuntos
Aorta , Hemodinâmica , Humanos , Teorema de Bayes , Incerteza , Reologia , Estresse Mecânico , Modelos Cardiovasculares , Velocidade do Fluxo Sanguíneo , Simulação por Computador
3.
Int J Numer Method Biomed Eng ; 39(2): e3669, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36507557

RESUMO

Aortic dissection is caused by a tear on the aortic wall that allows blood to flow through the wall layers. Usually, this tear involves the intimal and partly the medial layer of the aortic wall. As a result, a new false lumen develops besides the original aorta, denoted then as the true lumen. The local hemodynamic conditions such as flow disturbances, recirculations and low wall shear stress may cause thrombus formation and growth in the false lumen. Since the false lumen status is a significant predictor for late-dissection-related deaths, it is of great importance in the medical management of patients with aortic dissection. The hemodynamic changes in the aorta also alter the electrical conductivity of blood. Since the blood is much more conductive than other tissues in the body, such changes can be identified with non-invasive methods such as impedance cardiography. Therefore, in this study, the capability of impedance cardiography in monitoring thrombosis in the false lumen is studied by multiphysics simulations to assist clinicians in the medical management of patients under treatment. To tackle this problem, a 3D computational fluid dynamics simulation has been set up to model thrombosis in the false lumen and its impact on the blood flow-induced conductivity changes. The electrical conductivity changes of blood have been assigned as material properties of the blood-filled aorta in a 3D finite element electric simulation model to investigate the impact of conductivity changes on the measured impedance from the body's surface. The results show remarkable changes in the electrical conductivity distribution in the measurement region due to thrombosis in the false lumen, which significantly impacts the morphology of the impedance cardiogram. Thus, frequent monitoring of impedance cardiography signals may allow tracking the thrombus formation and growth in the false lumen.


Assuntos
Aneurisma da Aorta Torácica , Aneurisma Aórtico , Dissecção Aórtica , Procedimentos Endovasculares , Trombose , Humanos , Aneurisma Aórtico/complicações , Cardiografia de Impedância/efeitos adversos , Aorta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...