Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Biomembr ; 1866(7): 184364, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901662

RESUMO

The combined application of electric fields and ultrasonic waves has shown promise in controlling cell membrane permeability, potentially resulting in synergistic effects that can be explored in the biotechnology industry. However, further clarification on how these processes interact is still needed. The objective of the present study was to investigate the atomic-scale effects of these processes on a DPPC lipid bilayer using molecular dynamics simulations. For higher electric fields, capable of independently forming pores, the application of an ultrasonic wave in the absence of cavitation yielded no additional effects on pore formation. However, for lower electric fields, the reduction in bilayer thickness induced by the shock wave catalyzed the electroporation process, effectively shortening the mean path that water molecules must traverse to form pores. When cavitation was considered, synergistic effects were evident only if the wave alone was able to generate pores through the formation of a water nanojet. In these cases, sonoporation acted as a mean to focus the electroporation effects on the initial pore formed by the nanojet. This study contributes to a better understanding of the synergy between electric fields and ultrasonic waves and to an optimal selection of processing parameters in practical applications of these processes.

2.
Biochim Biophys Acta Biomembr ; 1864(12): 184049, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36113558

RESUMO

Electroporation is a cell-level phenomenon caused by an ionic imbalance in the membrane, being of great relevance in various fields of knowledge. A dependence of the pore formation kinetics on the environmental conditions (temperature and pressure) of the cell membrane has already been reported, but further clarification regarding how these variables affect the pore formation/resealing dynamics and the transport of molecules through the membrane is still lacking. The objective of the present study was to investigate the temperature (288-348 K) and pressure (1-5000 atm) effects on the electroporation kinetics using coarse-grained molecular dynamics simulations. Results shown that the time for pore formation and resealing increased with pressure and decreased with temperature, whereas the maximum pore radius increased with temperature and decreased with pressure. This behavior influenced the ion migration through the bilayer, and the higher ionic mobility was obtained in the 288 K/1000 atm simulations, i.e., a combination of low temperature and (not excessively) high pressure. These results were used to discuss some experimental observations regarding the extraction of intracellular compounds applying this technique. This study contributes to a better understanding of electroporation under different thermodynamic conditions and to an optimal selection of processing parameters in practical applications which exploit this phenomenon.


Assuntos
Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Membrana Celular/metabolismo , Eletroporação , Bicamadas Lipídicas/metabolismo , Temperatura
3.
Int J Food Microbiol ; 338: 108993, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33310209

RESUMO

Fungal spoilage in fruit juices is a currently relevant issue considering that recent reports have found unacceptable fungal levels even after traditional pasteurization processes. Ohmic heating demonstrated to be a good alternative process to conventional pasteurization, as it can promote higher heating rates and additional cell damage in some scenarios (nonthermal effects). However, the application of ohmic processing for fungi inactivation has not been properly investigated. The objective of this study was to analyze the inactivation of Aspergillus fumigatus, a highly distributed fungi species, in apple juice by ohmic and conventional heating at 75, 80, 85, 90 and 94 °C. Predictive primary and secondary models were fitted and the Weibull-Mafart models were the most accurate to describe the experimental behavior considering the statistical indices applied. Statistical differences between both thermal processes were found in the three lower analyzed temperatures (75, 80 and 85 °C), which is possibly related to nonthermal effects. When ohmic heating was applied, processing time was up to 23% shorter. The resulted model was successfully validated in two distinct temperatures (83 and 92 °C) and could be applied to obtain adequate processing times for apple juice pasteurization. This study contributes to deepen the knowledge concerning the use of ohmic heating for fungi inactivation.


Assuntos
Aspergillus fumigatus/fisiologia , Eletricidade , Microbiologia de Alimentos/métodos , Sucos de Frutas e Vegetais/microbiologia , Malus/microbiologia , Pasteurização , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...