Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicology ; 448: 152637, 2021 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-33220337

RESUMO

Microphysiological systems (MPS) aim to mimic the dynamic microenvironment and the interaction between tissues. While MPS exist for investigating pharmaceuticals, the applicability of MPS for cosmetics ingredients is yet to be evaluated. The HUMIMIC Chip2 ("Chip2″), is the first multi-organ chip technology to incorporate skin models, allowing for the topical route to be tested. Therefore, we have used this model to analyze the impact of different exposure scenarios on the pharmacokinetics and pharmacodynamics of two topically exposed chemicals, hyperforin and permethrin. The Chip2 incorporated reconstructed human epidermis models (EpiDerm™) and HepaRG-stellate spheroids. Initial experiments using static incubations of single organoids helped determine the optimal dose. In the Chip2 studies, parent and metabolites were analyzed in the circuit over 5 days after application of single and repeated topical or systemic doses. The gene expression of relevant xenobiotic metabolizing enzymes in liver spheroids was measured to reflect toxicodynamics effects of the compounds in liver. The results show that 1) metabolic capacities of EpiDerm™ and liver spheroids were maintained over five days; 2) EpiDerm™ model barrier function remained intact; 3) repeated application of compounds resulted in higher concentrations of parent chemicals and most metabolites compared to single application; 4) compound-specific gene induction e.g. induction of CYP3A4 by hyperforin depended on the application route and frequency; 5) different routes of application influenced the systemic concentrations of both parents and metabolites in the chip over the course of the experiment; 6) there was excellent intra- and inter-lab reproducibility. For permethrin, a process similar to the excretion in a human in vivo study could be simulated which was remarkably comparable to the in vivo situation. These results support the use of the Chip2 model to provide information on parent and metabolite disposition that may be relevant to risk assessment of topically applied cosmetics ingredients.


Assuntos
Fígado/efeitos dos fármacos , Permetrina/farmacocinética , Floroglucinol/análogos & derivados , Pele/efeitos dos fármacos , Terpenos/farmacocinética , Técnicas de Cultura de Tecidos/métodos , Humanos , Inseticidas/toxicidade , Fígado/citologia , Fígado/metabolismo , Técnicas de Cultura de Órgãos/métodos , Permetrina/toxicidade , Floroglucinol/farmacocinética , Floroglucinol/toxicidade , Pele/citologia , Pele/metabolismo , Terpenos/toxicidade
2.
Toxicol In Vitro ; 72: 105051, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33188879

RESUMO

Parabens are alkyl esters of 4-hydroxybenzoic acid (4-HBA), with short-chain parabens used as antimicrobials in cosmetics. We investigated the impact of chain structure on skin and liver metabolism. Incubations with primary human hepatocytes and human liver S9 indicated that methyl-, ethyl-, propyl- and butylparaben were rapidly metabolized to similar metabolites, including 4-HBA plus the corresponding alcohols. Liver and EpiSkin™ S9 were used to investigate the metabolism of 16 short and long straight- and branched-chain parabens. The rate of hydrolysis generally decreased with increasing chain length in liver S9, whereas the reverse was true for EpiSkin™ S9. Chain length also correlated with the number of metabolites, with more oxidized metabolites detected from longer chain parabens. The identity of the alcohol group impacted metabolism the most, in terms of the rate of metabolism and the contribution of cofactors. The majority of parabens (13/16) exhibited high plasma protein binding (PPB) (>90%); whereas, 4-HBA PPB was 38%. PPB was related to the LogP of the parabens. In conclusion, the major and common paraben metabolite in PHH, liver S9 and EpiSkin™ S9 was 4-HBA. The rate of metabolism, type of metabolite and contribution of hydrolysis was tissue-specific (liver, skin) and was influenced by the chain length (and hence LogP), structural isomeric form (straight vs branched), and/or the identity of the alkyl group. SHORT ABSTRACT: We investigated how the chain structure of parabens affects their metabolism by liver and EpiSkin™ S9. The major and common metabolite in primary human hepatocytes, liver S9 and EpiSkin™ S9 was 4-HBA plus the corresponding alcohols. The rate of metabolism, type of metabolite and contribution of hydrolysis was tissue-specific and influenced by the chain length, structural isomeric form (straight vs branched), and/or the identity of the alkyl group. Most parabens exhibited high PPB (>90%), whereas the PPB of 4-HBA was 38%.


Assuntos
Proteínas Sanguíneas/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Parabenos/farmacologia , Conservantes Farmacêuticos/farmacologia , Pele/metabolismo , Células Cultivadas , Feminino , Humanos , Hidrólise , Técnicas In Vitro , Masculino , Modelos Biológicos , Estrutura Molecular , Parabenos/química , Conservantes Farmacêuticos/química , Ligação Proteica
3.
Toxicol In Vitro ; 60: 212-228, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31158489

RESUMO

CYP enzyme induction is a sensitive biomarker for phenotypic metabolic competence of in vitro test systems; it is a key event associated with thyroid disruption, and a biomarker for toxicologically relevant nuclear receptor-mediated pathways. This paper summarises the results of a multi-laboratory validation study of two in vitro methods that assess the potential of chemicals to induce cytochrome P450 (CYP) enzyme activity, in particular CYP1A2, CYP2B6, and CYP3A4. The methods are based on the use of cryopreserved primary human hepatocytes (PHH) and human HepaRG cells. The validation study was coordinated by the European Union Reference Laboratory for Alternatives to Animal Testing of the European Commission's Joint Research Centre and involved a ring trial among six laboratories. The reproducibility was assessed within and between laboratories using a validation set of 13 selected chemicals (known human inducers and non-inducers) tested under blind conditions. The ability of the two methods to predict human CYP induction potential was assessed. Chemical space analysis confirmed that the selected chemicals are broadly representative of a diverse range of chemicals. The two methods were found to be reliable and relevant in vitro tools for the assessment of human CYP induction, with the HepaRG method being better suited for routine testing. Recommendations for the practical application of the two methods are proposed.


Assuntos
Indutores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/biossíntese , Alternativas aos Testes com Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Indutores das Enzimas do Citocromo P-450/química , Indução Enzimática , Hepatócitos/efeitos dos fármacos , Humanos , Laboratórios , Reprodutibilidade dos Testes , Solubilidade
4.
J Tissue Eng Regen Med ; 9(9): 1017-26, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23165723

RESUMO

Primary human hepatocytes represent an important cell source for in vitro investigation of hepatic drug metabolism and disposition. In this study, a multi-compartment capillary membrane-based bioreactor technology for three-dimensional (3D) perfusion culture was further developed and miniaturized to a volume of less than 0.5 ml to reduce demand for cells. The miniaturized bioreactor was composed of two capillary layers, each made of alternately arranged oxygen and medium capillaries serving as a 3D culture for the cells. Metabolic activity and stability of primary human hepatocytes was studied in this bioreactor in the presence of 2.5% fetal calf serum (FCS) under serum-free conditions over a culture period of 10 days. The miniaturized bioreactor showed functions comparable to previously reported data for larger variants. Glucose and lactate metabolism, urea production, albumin synthesis and release of intracellular enzymes (AST, ALT, GLDH) showed no significant differences between serum-free and serum-supplemented bioreactors. Activities of human-relevant cytochrome P450 (CYP) isoenzymes (CYP1A2, CYP3A4/5, CYP2C9, CYP2D6, CYP2B6) analyzed by determination of product formation rates from selective probe substrates were also comparable in both groups. Gene expression analysis showed moderately higher expression in the majority of CYP enzymes, transport proteins and enzymes of Phase II metabolism in the serum-free bioreactors compared to those maintained with FCS. In conclusion, the miniaturized bioreactor maintained stable function over the investigated period and thus provides a suitable system for pharmacological studies on primary human hepatocytes under defined serum-free conditions.


Assuntos
Reatores Biológicos , Avaliação Pré-Clínica de Medicamentos , Hepatócitos/citologia , Membranas Artificiais , Miniaturização , Células Cultivadas , Meios de Cultura Livres de Soro , Sistema Enzimático do Citocromo P-450/metabolismo , Imunofluorescência , Perfilação da Expressão Gênica , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Humanos , Técnicas In Vitro
5.
Biotechnol Bioeng ; 109(12): 3172-81, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22688505

RESUMO

Based on a hollow fiber perfusion technology with internal oxygenation, a miniaturized bioreactor with a volume of 0.5 mL for in vitro studies was recently developed. Here, the suitability of this novel culture system for pharmacological studies was investigated, focusing on the model drug diclofenac. Primary human liver cells were cultivated in bioreactors and in conventional monolayer cultures in parallel over 10 days. From day 3 on, diclofenac was continuously applied at a therapeutic concentration (6.4 µM) for analysis of its metabolism. In addition, the activity and gene expression of the cytochrome P450 (CYP) isoforms CYP1A2, CYP2B6, CYP2C9, CYP2D6, and CYP3A4 were assessed. Diclofenac was metabolized in bioreactor cultures with an initial conversion rate of 230 ± 57 pmol/h/10(6) cells followed by a period of stable conversion of about 100 pmol/h/10(6) cells. All CYP activities tested were maintained until day 10 of bioreactor culture. The expression of corresponding mRNAs correlated well with the degree of preservation. Immunohistochemical characterization showed the formation of neo-tissue with expression of CYP2C9 and CYP3A4 and the drug transporters breast cancer resistance protein (BCRP) and multidrug resistance protein 2 (MRP2) in the bioreactor. In contrast, monolayer cultures showed a rapid decline of diclofenac conversion and cells had largely lost activity and mRNA expression of the assessed CYP isoforms at the end of the culture period. In conclusion, diclofenac metabolism, CYP activities and gene expression levels were considerably more stable in bioreactor cultures, making the novel bioreactor a useful tool for pharmacological or toxicological investigations requiring a highly physiological in vitro representation of the liver.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/instrumentação , Hepatócitos/metabolismo , Miniaturização/instrumentação , Farmacologia/métodos , Anti-Inflamatórios não Esteroides/farmacocinética , Células Cultivadas , Sistema Enzimático do Citocromo P-450/análise , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Diclofenaco/farmacocinética , Regulação da Expressão Gênica , Hepatócitos/química , Hepatócitos/citologia , Humanos , Imuno-Histoquímica , Farmacocinética , Farmacologia/instrumentação , Reação em Cadeia da Polimerase em Tempo Real
6.
Eur J Pharm Sci ; 45(5): 716-24, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22330146

RESUMO

In vitro repeated dose testing for the assessment of chronic drug-induced effects is a huge challenge in preclinical pharmaceutical drug development. Chronic toxicity results in discontinuation of therapy or post-marketing withdrawal of drugs despite in vivo preclinical screening. In case of hepatotoxicity, due to limited long term viability and functionality of primary hepatocytes, chronic hepatic effects are difficult to detect. In this study, we maintained primary human hepatocytes in a serum-free cultivation medium for more than 3 weeks and analyzed physiology, viability and drug metabolizing capacities of the hepatocytes. Moreover, we assessed acute (24 h) diclofenac toxicity in a range of (10-1000 µM) concentrations. The chronic (9 repeated doses) toxicity at one clinically relevant and another higher concentration (6.4 and 100 µM) was also tested. We investigated phase I and II metabolism of diclofenac upon repeated dose exposure and analyzed effects on the cellular exometabolome. Acute 24 h assessment revealed toxicity only for the highest tested concentration (1 mM). Upon repeated dose exposure, toxic effects were observed even at a low, clinically relevant concentration (6.4 µM). Biotransformation pathways were active for 3 weeks and diclofenac-acylglucuronide was detected as the predominant metabolite. Dose dependent diclofenac-induced effects on exometabolome, such as on the production of lactate and 3-hydroxybutyric acid as well as glucose and galactose metabolism, were observed upon nine repeated doses. Summarizing, we show that repeated dose testing on long-term functional cultures of primary human hepatocytes may be included for the assessment of long term toxic effects in preclinical screening and can potentially help replace/reduce in vivo animal testing.


Assuntos
Diclofenaco/farmacocinética , Diclofenaco/toxicidade , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Biotransformação , Células Cultivadas , Sistema Enzimático do Citocromo P-450/metabolismo , Diclofenaco/administração & dosagem , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Galactose/metabolismo , Glucose/metabolismo , Humanos , Ácido Láctico/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Desintoxicação Metabólica Fase I/fisiologia , Desintoxicação Metabólica Fase II/fisiologia , Metaboloma/efeitos dos fármacos
7.
Altern Lab Anim ; 39(2): 147-71, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21639679

RESUMO

Drug-induced liver injury is a common reason for drug attrition in late clinical phases, and even for post-launch withdrawals. As a consequence, there is a broad consensus in the pharmaceutical industry, and within regulatory authorities, that a significant improvement of the current in vitro test methodologies for accurate assessment and prediction of such adverse effects is needed. For this purpose, appropriate in vivo-like hepatic in vitro models are necessary, in addition to novel sources of human hepatocytes. In this report, we describe recent and ongoing research toward the use of human embryonic stem cell (hESC)-derived hepatic cells, in conjunction with new and improved test methods, for evaluating drug metabolism and hepatotoxicity. Recent progress on the directed differentiation of human embryonic stem cells to the functional hepatic phenotype is reported, as well as the development and adaptation of bioreactors and toxicity assay technologies for the testing of hepatic cells. The aim of achieving a testing platform for metabolism and hepatotoxicity assessment, based on hESC-derived hepatic cells, has advanced markedly in the last 2-3 years. However, great challenges still remain, before such new test systems could be routinely used by the industry. In particular, we give an overview of results from the Vitrocellomics project (EU Framework 6) and discuss these in relation to the current state-of-the-art and the remaining difficulties, with suggestions on how to proceed before such in vitro systems can be implemented in industrial discovery and development settings and in regulatory acceptance.


Assuntos
Alternativas aos Testes com Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Células-Tronco Embrionárias , Hepatócitos/efeitos dos fármacos , Testes de Toxicidade/métodos , Animais , Reatores Biológicos , Biotransformação , Diferenciação Celular , Linhagem Celular , Respiração Celular , Indução Enzimática , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Redes e Vias Metabólicas , Ratos
8.
Steroids ; 76(6): 607-15, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21376746

RESUMO

Dydrogesterone is widely used for menstrual disorders, endometriosis, threatened and habitual abortion and postmenopausal hormone replacement therapy. Although progestins have a promiscuous nature, dydrogesterone does not have clinically relevant androgenic, estrogenic, glucocorticoid or mineralocorticoid activities. To date, systematic biochemical characterization of this progestin and its active main metabolite, 20α-dihydrodydrogesterone, has not been performed in comparison to progesterone. The objective of this study was to evaluate the selectivity and potential androgenic/antiandrogenic effects of dydrogesterone and its metabolite in comparison to progesterone and medroxyprogesterone acetate by analyzing their interference with AR signaling in vitro. We characterized dydrogesterone and its metabolite for their binding and transactivation of androgen and other steroid hormone receptors and for their potential inhibitory effects against androgen biosynthetic enzymes, 17ß-hydroxysteroid dehydrogenase types 3 and 5 and 5α-reductase types 1 and 2. We found that dydrogesterone resembled progesterone mainly in its progestogenic effects and less in its androgenic, anti-androgenic, glucocorticoid and antiglucocorticoid effects; whereas, 20α-dihydrodydrogesterone showed reduced progestogenic potency with no androgenic, glucocorticoid and mineralocorticoid effects. Effects on the androgen and glucocorticoid receptor differed depending on the technology used to investigate transactivation. Progesterone, but not dydrogesterone and 20α-dihydrodydrogesterone, exerted anti-androgenic effects at the pre-receptor level by inhibiting 5α-reductase type 2. Dydrogesterone, 20α-dihydrodydrogesterone and progesterone inhibited the biosynthesis of testosterone catalyzed by 17ß-hydroxysteroid dehydrogenase types 3 and 5; however, due to their micromolar K(i) values, these activities appeared to be not of relevance at therapeutic levels. Overall, our data show that the anti-androgenic potential of dydrogesterone and 20α-dihydrodydrogesterone is less pronounced compared to progesterone.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Didrogesterona/farmacologia , Progestinas/farmacologia , 17-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , Inibidores de 5-alfa Redutase/farmacologia , Sítios de Ligação , Ligação Competitiva , Linhagem Celular , Didrogesterona/análogos & derivados , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Humanos , Receptores Androgênicos/química , Receptores Androgênicos/metabolismo , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/metabolismo , Receptores de Progesterona/antagonistas & inibidores , Receptores de Progesterona/química , Receptores de Progesterona/metabolismo , Ativação Transcricional
9.
J Tissue Eng Regen Med ; 5(8): e207-18, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21442764

RESUMO

As the major research focus is shifting to three-dimensional (3D) cultivation techniques, hollow-fiber bioreactors, allowing the formation of tissue-like structures, show immense potential as they permit controlled in vitro cultivation while supporting the in vivo environment. In this study we carried out a systematic and detailed physiological characterization of human liver cells in a 3D hollow-fiber bioreactor system continuously run for > 2 weeks. Primary human hepatocytes were maintained viable and functional over the whole period of cultivation. Both general cellular functions, e.g. oxygen uptake, amino acid metabolism and substrate consumption, and liver-specific functions, such as drug-metabolizing capacities and the production of liver-specific metabolites were found to be stable for > 2 weeks. As expected, donor-to-donor variability was observed in liver-specific functions, namely urea and albumin production. Moreover, we show the maintenance of primary human hepatocytes in serum-free conditions in this set-up. The stable basal cytochrome P450 activity 3 weeks after isolation of the cells demonstrates the potential of such a system for pharmacological applications. Liver cells in the presented 3D bioreactor system could eventually be used not only for long-term metabolic and toxicity studies but also for chronic repeated dose toxicity assessment.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Hepatócitos/fisiologia , Aspartato Aminotransferases/metabolismo , Sobrevivência Celular , Células Cultivadas , Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/citologia , Humanos , Especificidade de Órgãos , Consumo de Oxigênio , Preparações Farmacêuticas/metabolismo , Especificidade por Substrato , Fatores de Tempo
10.
J Pharmacol Toxicol Methods ; 63(1): 59-68, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20460162

RESUMO

INTRODUCTION: Primary human hepatocytes are considered as a highly predictive in vitro model for preclinical drug metabolism studies. Due to the limited availability of human liver tissue for cell isolation, there is a need of alternative cell sources for pharmaceutical research. METHODS: In this study, the metabolic activity and long-term stability of the human hepatoma cell line HepaRG were investigated in comparison to primary human hepatocytes (pHH). Hepatocyte-specific parameters (albumin and urea synthesis, galactose and sorbitol elimination) and the activity of human-relevant cytochrome P450 (CYP) enzymes (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) were assayed in both groups over a period of 14 days subsequently to a two week culture period in differentiated state in case of the HepaRG cells, and compared with those of cryopreserved hepatocytes in suspension. In addition, the inducibility of CYP enzymes and the intrinsic clearances of eleven reference drugs were determined. RESULTS: The results show overall stable metabolic activity of HepaRG cells over the monitored time period. Higher albumin production and galactose/sorbitol elimination rates were observed compared with pHH, while urea production was not detected. CYP enzyme-dependent drug metabolic capacities were shown to be stable over the cultivation time in HepaRG cells and were comparable or even higher (CYP2C9, CYP2D6, CYP3A4) than in pHH, whereas commercially available hepatocytes showed a different pattern The intrinsic clearance rates of reference drugs and enzyme induction of most CYP enzymes were similar in HepaRG cells and pHH. CYP1A2 activity was highly inducible in HepaRG by ß-naphthoflavone. DISCUSSION: In conclusion, the results from this study indicate that HepaRG cells could provide a suitable alternative to pHH in pharmaceutical research and development for metabolism studies such as CYP induction or sub-chronic to chronic hepatotoxicity studies.


Assuntos
Carcinoma Hepatocelular , Linhagem Celular Tumoral , Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/metabolismo , Neoplasias Hepáticas , Desintoxicação Metabólica Fase II , Preparações Farmacêuticas/metabolismo , Técnicas de Cultura de Células , Testes de Química Clínica , Sistema Enzimático do Citocromo P-450/genética , Indução Enzimática , Feminino , Hepatócitos/citologia , Humanos , Masculino
11.
Toxicol In Vitro ; 24(2): 686-94, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19427895

RESUMO

A dynamic respiration assay based on luminescence decay time detection of oxygen for high throughput toxicological assessment is presented. The method uses 24-well plates (OxoDishes) read with the help of a sensor dish reader placed in a humidified CO(2)-incubator. Adherent primary rat hepatocytes and the human hepatic cell line Hep G2 were exposed to known toxic compounds. Dissolved oxygen concentration, a measure of respiration, was measured with an oxygen sensor optode immobilized in the centre of each well. The cells were maintained in the dishes during the assay period and can afterwards be processed for further analyses. This dynamic, non-invasive measurement allowed calculation of 50% lethal concentrations (LC(50)) for any incubation time point giving concentration-time-dependent responses without further manipulation or removal of the cells from the incubator. Toxicokinetic profiles are compared with Sulforhodamine B assay, a common cytotoxicity assay. The novel assay is robust and flexible, very easy to carry out and provides continuous online respiration data reflecting dynamic toxicity responses. It can be adapted to any cell-based system and the calculated kinetics contributes to understanding of cell death mechanisms.


Assuntos
Bioensaio/métodos , Citotoxinas/toxicidade , Hepatócitos/efeitos dos fármacos , Consumo de Oxigênio/fisiologia , Testes de Toxicidade/métodos , Animais , Adesão Celular , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos/métodos , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Masculino , Oxigênio/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Farmacocinética , Ratos , Ratos Wistar
12.
Toxicol Appl Pharmacol ; 237(2): 221-31, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19332084

RESUMO

Efficient and accurate safety assessment of compounds is extremely important in the preclinical development of drugs especially when hepatotoxicity is in question. Multiparameter and time resolved assays are expected to greatly improve the prediction of toxicity by assessing complex mechanisms of toxicity. An integrated approach is presented in which Hep G2 cells and primary rat hepatocytes are compared in frequently used cytotoxicity assays for parent compound toxicity. The interassay variability was determined. The cytotoxicity assays were also compared with a reliable alternative time resolved respirometric assay. The set of training compounds consisted of well known hepatotoxins; amiodarone, carbamazepine, clozapine, diclofenac, tacrine, troglitazone and verapamil. The sensitivity of both cell systems in each tested assay was determined. Results show that careful selection of assay parameters and inclusion of a kinetic time resolved assay improves prediction for non-metabolism mediated toxicity using Hep G2 cells as indicated by a sensitivity ratio of 1. The drugs with EC(50) values 100 microM or lower were considered toxic. The difference in the sensitivity of the two cell systems to carbamazepine which causes toxicity via reactive metabolites emphasizes the importance of human cell based in-vitro assays. Using the described system, primary rat hepatocytes do not offer advantage over the Hep G2 cells in parent compound toxicity evaluation. Moreover, respiration method is non invasive, highly sensitive and allows following the time course of toxicity. Respiration assay could serve as early indicator of changes that subsequently lead to toxicity.


Assuntos
Citotoxinas/toxicidade , Avaliação Pré-Clínica de Medicamentos/métodos , Hepatócitos/efeitos dos fármacos , Animais , Células Cultivadas , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Sensibilidade e Especificidade , Fatores de Tempo
13.
Eur J Med Chem ; 44(7): 2765-75, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19211174

RESUMO

Recently, the steroidal CYP17 inhibitor Abiraterone entered phase II clinical trial for the treatment of androgen-dependent prostate cancer. As 17alpha-hydroxylase-17,20-lyase (CYP17) catalyzes the last step in androgen biosynthesis, inhibition of this target should affect not only testicular but also adrenal androgen formation. Therefore CYP17 inhibitors should be advantageous over existing therapies, for example with GnRH analogues. However, steroidal drugs are known for side effects which are due to affinities for steroid receptors. Therefore we decided to synthesize non-steroidal compounds mimicking the natural CYP17 substrates pregnenolone and progesterone. The synthesis and biological evaluation of a series of 15 novel and highly active non-steroidal CYP17 inhibitors are reported. The compounds were prepared via Suzuki-cross-coupling, Grignard reaction and CDI-assisted S(N)t-reaction with imidazole and their inhibitory activity was examined with recombinant human CYP17 expressed in Escherichia coli. Promising compounds were further tested for their selectivity against the hepatic enzyme CYP3A4 and the glucocorticoid-forming enzyme CYP11B1. All compounds turned out to be potent CYP17 inhibitors. The most active compounds 7 and 8 were much more active than Ketoconazole showing activity comparable to Abiraterone (IC(50) values of 90 and 52nM vs. 72nM). Most compounds also showed higher selectivities than Ketoconazole, but turned out to be less selective than Abiraterone. Docking studies using our CYP17 protein model were performed with selected compounds to study the interactions between the inhibitors and the amino acid residues of the active site.


Assuntos
Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Modelos Moleculares , Esteroide 17-alfa-Hidroxilase/antagonistas & inibidores , Compostos de Bifenilo/síntese química , Domínio Catalítico , Citocromo P-450 CYP3A , Inibidores do Citocromo P-450 CYP3A , Inibidores Enzimáticos/síntese química , Humanos , Esteroide 11-beta-Hidroxilase/antagonistas & inibidores , Esteroide 17-alfa-Hidroxilase/química , Relação Estrutura-Atividade , Especificidade por Substrato
14.
Tissue Eng Part C Methods ; 15(2): 157-67, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19072051

RESUMO

Primary cultures of human hepatocytes are a reference cellular model, because they maintain key features of liver cells in vivo, such as expression of drug-metabolizing enzymes, response to enzyme inducers, and generation of hepatic metabolites. However, there is a restricted availability of primary hepatocytes, and they show phenotypic instability in culture. Thus, different alternatives have been developed to overcome the culture limitations and to mimic in vivo tissue material. Herein, culture conditions, such as medium composition, impeller type, and cell inoculum concentration, were optimized in stirred culture vessels and applied to a three-dimensional (3D) bioreactor system. Cultures of rat hepatocytes as 3D structures on bioreactor, better resembling in vivo cellular organization, were compared to traditional monolayer cultures. Liver-specific functions, such as albumin and urea secretion, phase I and phase II enzyme activities, and the capacity to metabolize diphenhydramine and troglitazone, were measured over time. Hepatocyte functions were preserved for longer time in the 3D bioreactor than in the monolayer system. Moreover, rat hepatocytes grown in 3D system maintained the ability to metabolize such compounds, as well as in vivo. Our results indicate that hepatocytes cultured as 3D structures are a qualified model system to study hepatocyte drug metabolism over a long period of time. Moreover, these cultures can be used as feeding systems to obtain cells for other tests in a short time.


Assuntos
Técnicas de Cultura de Células/métodos , Hepatócitos/citologia , Animais , Reatores Biológicos , Células Cultivadas , Cromanos/metabolismo , Difenidramina/metabolismo , Hepatócitos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Microscopia de Contraste de Fase , Oxigênio/metabolismo , Ratos , Ratos Wistar , Temperatura , Tiazolidinedionas/metabolismo , Fatores de Tempo , Troglitazona
15.
Arch Pharm (Weinheim) ; 341(10): 597-609, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18720339

RESUMO

Twenty-one novel compounds originating from two classes of annulated biphenyls were synthesized as mimetics of the steroidal A- and C-rings and examined for their potency as inhibitors of human CYP17. Selected compounds were tested for inhibition of the hepatic CYP enzyme 3A4. Potent CYP17 inhibitors were found for each class, compound 9 (17 and 71% at 0.2 and 2 microM, respectively) and 21 (591 nM). Compound 21 showed only weak inhibition of CYP3A4 (32 and 64% at 2 and 10 microM, respectively). Both compounds, however, exhibited moderate to strong inhibition of the glucocorticoid-forming enzyme CYP11B1. The most interesting compounds were docked into our protein model. They bound into one of the modes which we have previously published. New interaction regions were identified.


Assuntos
Compostos de Bifenilo/química , Desenho de Fármacos , Inibidores Enzimáticos , Imidazóis/química , Esteroide 17-alfa-Hidroxilase/antagonistas & inibidores , Citocromo P-450 CYP3A , Inibidores do Citocromo P-450 CYP3A , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Humanos , Masculino , Modelos Moleculares , Conformação Molecular , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/enzimologia , Esteroide 11-beta-Hidroxilase/antagonistas & inibidores , Esteroide 17-alfa-Hidroxilase/biossíntese , Relação Estrutura-Atividade
16.
Bioorg Med Chem ; 16(16): 7715-27, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18674917

RESUMO

Thirty-five novel substituted imidazolyl methylene biphenyls have been synthesized as CYP17 inhibitors for the potential treatment of prostate cancer. Their activities have been tested with recombinant human CYP17 expressed in Escherichia coli. Promising compounds were tested for selectivity against CYP11B1, CYP11B2, and hepatic CYP enzymes 3A4, 1A2, 2B6 and 2D6. The core rigidified compounds (30-35) were the most active ones, being much more potent than Ketoconazole and reaching the activity of Abiraterone. However, they were not very selective. Another rather potent and more selective inhibitor (compound 23, IC(50)=345 nM) was further examined in rats regarding plasma testosterone levels and pharmacokinetic properties. Compared to the reference Abiraterone, 23 was more active in vivo, showed a longer plasma half-life (10h) and a higher bioavailability. Using our CYP17 homology protein model, docking studies with selected compounds were performed to study possible interactions between inhibitors and amino acid residues of the active site.


Assuntos
Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia , Imidazóis/química , Imidazóis/farmacologia , Esteroide 17-alfa-Hidroxilase/antagonistas & inibidores , Animais , Sítios de Ligação , Compostos de Bifenilo/síntese química , Compostos de Bifenilo/farmacocinética , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/farmacologia , Humanos , Imidazóis/síntese química , Imidazóis/farmacocinética , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Masculino , Modelos Moleculares , Estrutura Secundária de Proteína , Ratos , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Infravermelho , Testosterona/sangue
17.
J Med Chem ; 51(16): 5064-74, 2008 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-18672861

RESUMO

Recently, we reported on the development of potent and selective inhibitors of aldosterone synthase (CYP11B2) for the treatment of congestive heart failure and myocardial fibrosis. A major drawback of these nonsteroidal compounds was a strong inhibition of the hepatic drug-metabolizing enzyme CYP1A2. In the present study, we examined the influence of substituents in the heterocycle of lead structures with a naphthalene molecular scaffold to overcome this unwanted side effect. With respect to CYP11B2 inhibition, some substituents induced a dramatic increase in inhibitory potency. The methoxyalkyl derivatives 22 and 26 are the most potent CYP11B2 inhibitors up to now (IC50 = 0.2 nM). Most compounds also clearly discriminated between CYP11B2 and CYP11B1, and the CYP1A2 potency significantly decreased in some cases (e.g., isoquinoline derivative 30 displayed only 6% CYP1A2 inhibition at 2 microM concentration). Furthermore, isoquinoline derivative 28 proved to be capable of passing the gastrointestinal tract and reached the general circulation after peroral administration to male Wistar rats.


Assuntos
Citocromo P-450 CYP11B2/antagonistas & inibidores , Inibidores do Citocromo P-450 CYP1A2 , Naftalenos/síntese química , Animais , Citocromo P-450 CYP1A2 , Fibrose/tratamento farmacológico , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Masculino , Miocárdio/patologia , Naftalenos/farmacocinética , Naftalenos/farmacologia , Naftalenos/uso terapêutico , Ratos , Ratos Wistar , Relação Estrutura-Atividade
18.
J Med Chem ; 51(16): 5009-18, 2008 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-18672868

RESUMO

Abiraterone, a steroidal cytochrome P450 17alpha-hydroxylase-17,20-lyase inhibitor (CYP17), is currently undergoing phase II clinical trials as a potential drug for the treatment of androgen-dependent prostate cancer. Since steroidal compounds often show side effects attributable to their structure, we have tried to replace the sterane scaffold by nonsteroidal core structures. The design and synthesis of 20 new abiraterone mimetics are described. Their activities have been tested with recombinant human CYP17 expressed in E. coli. Promising compounds were further evaluated for selectivity against CYP11B1, CYP11B2, and the hepatic CYP3A4. Compounds 19 and 20 showed comparable activity to abiraterone (IC50 values of 144 and 64 nM vs 72 nM) and similar or even better selectivity against the other CYP enzymes. Selected compounds were also docked into our homology model, and the same binding modes as for abiraterone were found.


Assuntos
Androstenóis/síntese química , Androstenóis/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Esteroide 17-alfa-Hidroxilase/antagonistas & inibidores , Androstenos , Androstenóis/uso terapêutico , Compostos de Bifenilo/síntese química , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Humanos , Masculino , Modelos Moleculares , Proteínas Recombinantes/efeitos dos fármacos
19.
J Med Chem ; 51(15): 4685-98, 2008 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-18630892

RESUMO

17beta-Estradiol (E2) is implicated in the genesis and the development of estrogen-dependent diseases. Its concentration is mainly regulated by 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1), which catalyzes the reduction of the weak estrogen estrone (E1) to the highly potent E2. This enzyme is thus an important target for the treatment of hormone-dependent diseases. Thirty-seven novel substituted 6-phenyl-2-naphthols were synthesized and evaluated for 17beta-HSD1 inhibition, selectivity toward 17beta-HSD2 and the estrogen receptors (ERs) alpha and beta, and pharmacokinetic properties. SAR studies revealed that the compounds most likely bind according to binding mode B to the active site, i.e., the 6-phenyl moiety mimicking the steroidal A-ring. While substitution at the phenyl ring decreased activity, introduction of substituents at the naphthol moiety led to highly active compounds, especially in position 1. The 1-phenyl compound 32 showed a very high inhibitory activity for 17beta-HSD1 (IC50 = 20 nM) and good selectivity (17beta-HSD2 and ERs) and pharmacokinetic properties after peroral application.


Assuntos
17-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Naftóis/síntese química , Naftóis/farmacologia , 17-Hidroxiesteroide Desidrogenases/química , 17-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Inibidores Enzimáticos/química , Humanos , Masculino , Modelos Moleculares , Estrutura Molecular , Naftóis/química , Ratos , Ratos Wistar , Esteroides/química , Esteroides/farmacologia , Relação Estrutura-Atividade
20.
J Med Chem ; 51(7): 2158-69, 2008 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-18324762

RESUMO

Human 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) catalyzes the reduction of the weak estrogen estrone (E1) to the highly potent estradiol (E2). This reaction takes place in the target cell where the estrogenic effect is exerted via the estrogen receptor (ER). Estrogens, especially E2, are known to stimulate the proliferation of hormone-dependent diseases. 17beta-HSD1 is overexpressed in many breast tumors. Thus, it is an attractive target for the treatment of these diseases. Ligand- and structure-based drug design led to the discovery of novel, selective, and potent inhibitors of 17beta-HSD1. Phenyl-substituted bicyclic moieties were synthesized as mimics of the steroidal substrate. Computational methods were used to obtain insight into their interactions with the protein. Compound 5 turned out to be a highly potent inhibitor of 17beta-HSD1 showing good selectivity (17beta-HSD2, ERalpha and beta), medium cell permeation, reasonable metabolic stability (rat hepatic microsomes), and little inhibition of hepatic CYP enzymes.


Assuntos
17-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Estrogênios/metabolismo , Naftalenos/síntese química , Naftalenos/farmacologia , Neoplasias Hormônio-Dependentes/tratamento farmacológico , Neoplasias Hormônio-Dependentes/enzimologia , Quinolinas/síntese química , Quinolinas/farmacologia , Animais , Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Sítios de Ligação , Células CACO-2 , Simulação por Computador , Desenho de Fármacos , Inibidores Enzimáticos/química , Humanos , Ligação de Hidrogênio , Fígado/enzimologia , Masculino , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Estrutura Molecular , Naftalenos/química , Quinolinas/química , Ratos , Ratos Sprague-Dawley , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...