Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecography ; 39(10): 913-920, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27713599

RESUMO

During the last decades, describing, analysing and understanding the phylogenetic structure of species assemblages has been a central theme in both community ecology and macro-ecology. Among the wide variety of phylogenetic structure metrics, three have been predominant in the literature: Faith's phylogenetic diversity (PDFaith), which represents the sum of the branch lengths of the phylogenetic tree linking all species of a particular assemblage, the mean pairwise distance between all species in an assemblage (MPD) and the pairwise distance between the closest relatives in an assemblage (MNTD). Comparisons between studies using one or several of these metrics are difficult because there has been no comprehensive evaluation of the phylogenetic properties each metric captures. In particular it is unknown how PDFaith relates to MDP and MNTD. Consequently, it is possible that apparently opposing patterns in different studies might simply reflect differences in metric properties. Here, we aim to fill this gap by comparing these metrics using simulations and empirical data. We first used simulation experiments to test the influence of community structure and size on the mismatch between metrics whilst varying the shape and size of the phylogenetic tree of the species pool. Second we investigated the mismatch between metrics for two empirical datasets (gut microbes and global carnivoran assemblages). We show that MNTD and PDFaith provide similar information on phylogenetic structure, and respond similarly to variation in species richness and assemblage structure. However, MPD demonstrate a very different behaviour, and is highly sensitive to deep branching structure. We suggest that by combining complementary metrics that are sensitive to processes operating at different phylogenetic depths (i.e. MPD and MNTD or PDFaith) we can obtain a better understanding of assemblage structure.

2.
Ecology ; 96(1): 143-53, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26236899

RESUMO

Different assembly processes drive the spatial structure of meta-communities (beta-diversity). Recently, functional and phylogenetic diversities have been suggested as indicators of these assembly processes. Assuming that diversity is a good proxy for niche overlap, high beta-diversity along environmental gradients should be the result of environmental filtering while low beta-diversity should stem from competitive interactions. So far, studies trying to disentangle the relative importance of these assembly processes have provided mixed results. One reason for this may be that these studies often rely on a single measure of diversity and thus implicitly make a choice on how they account for species relative abundances and how species similarities are captured by functional traits or phylogeny. Here, we tested the effect of gradually scaling the importance of dominance (the weight given to dominant vs. rare species) and species similarity (the weight given to small vs. large similarities) on resulting beta-diversity patterns of an alpine plant meta-community. To this end, we combined recent extensions of the Hill numbers framework with Pagel's phylogenetic tree transformation approach. We included functional (based on the leaf-height-seed spectrum) and phylogenetic facets of beta-diversity in our analysis and explicitly accounted for effects of environmental and spatial covariates. We found that functional beta-diversity, was high when the same weight was given to dominant vs. rare species and to large vs. small species' similarities. In contrast, phylogenetic beta-diversity was low when greater weight was given to dominant species and small species' similarities. Those results suggested that different environments along the gradients filtered different species according to their functional traits, while, the same competitive lineages dominated communities across the gradients. Our results highlight that functional vs. phylogenetic facets, presence-absence vs. abundance structure and different weights of species' dissimilarity provide complementary and important information on the drivers of meta-community structure. By utilizing the full extent of information provided by the flexible frameworks of Hill numbers and Pagel's tree transformation, we propose a new approach to disentangle the patterns resulting from different assembly processes.


Assuntos
Biodiversidade , Filogenia , Plantas/genética , França
3.
Heredity (Edinb) ; 106(4): 678-89, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20717158

RESUMO

There is an increasing recognition that the interplay between ecological and evolutionary processes shapes the genetic footprint of populations during and after range expansions. However, more complex ecological processes regularly considered within spatial ecology remain unexplored in models describing the population genetics of range expansion. In this study we integrate flexible descriptions of population growth and competition as well as conditional dispersal into a model that simulates the fate of mutations occurring at the wave front of an expanding population. Our results show that the survival and distribution of a mutation is not only affected by its bias (that is, whether it is deleterious, neutral or beneficial) but also by the mode of local density regulation and conditional dispersal of the simulated populations. It is in particular the chance of a mutation to establish at the front of advance and 'surf' to high frequencies that critically depends on the investigated ecological processes. This is because of the influence of these processes on demographic stochasticity in the system and the differential responses of deleterious, neutral and beneficial mutations to this stochasticity. Generally, deleterious mutations rely more on chance and thus profit the most from ecological processes that enhance demographic stochasticity during the period of establishment. Our study emphasizes the importance of incorporating more ecological realism into evolutionary models to better understand the consequences of shifting geographic ranges for the genetic structure of populations and to find efficient adaptation strategies to mitigate these effects.


Assuntos
Genética Populacional , Mutação , Densidade Demográfica , Dinâmica Populacional , Simulação por Computador , Humanos , Modelos Genéticos
4.
J Evol Biol ; 23(12): 2656-67, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20946371

RESUMO

A growing body of empirical evidence demonstrates that at an expanding front, there can be strong selection for greater dispersal propensity, whereas recent theory indicates that mutations occurring towards the front of a spatially expanding population can sometimes 'surf' to high frequency and spatial extent. Here, we consider the potential interplay between these two processes: what role may mutation surfing play in determining the course of dispersal evolution and how might dispersal evolution itself influence mutation surfing? Using an individual-based coupled-map lattice model, we first run simulations to determine the fate of dispersal mutants that occur at an expanding front. Our results highlight that mutants that have a slightly higher dispersal propensity than the wild type always have a higher survival probability than those mutants with a dispersal propensity lower than, or very similar to, the wild type. However, it is not always the case that mutants with very high dispersal propensity have the greatest survival probability. When dispersal mortality is high, mutants of intermediate dispersal survive most often. Interestingly, the rate of dispersal that ultimately evolves at an expanding front is often substantially higher than that which confers a novel mutant with the greatest probability of survival. Second, we run a model in which we allow dispersal to evolve over the course of a range expansion and ask how the fate of a neutral or nonneutral mutant depends upon when and where during the expansion it arises. These simulations highlight that the success of a neutral mutant depends upon the dispersal genotypes that it is associated with. An important consequence of this is that novel mutants that arise at the front of an expansion, and survive, typically end up being associated with more dispersive genotypes than the wild type. These results offer some new insights into causes and the consequences of dispersal evolution during range expansions, and the methodology we have employed can be readily extended to explore the evolutionary dynamics of other life history characteristics.


Assuntos
Evolução Biológica , Simulação por Computador , Mutação , Densidade Demográfica , Dinâmica Populacional , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...