Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 154(8): 084301, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33639763

RESUMO

Hydrated molecular anions are present in the atmosphere. Revealing the structure of the microsolvation is key to understanding their chemical properties. The infrared spectra of CO3 •-(H2O)1,2 and CO4 •-(H2O)1,2 were measured via infrared multiple photon dissociation spectroscopy in both warm and cold environments. Redshifted from the free O-H stretch frequency, broad, structured spectra were observed in the O-H stretching region for all cluster ions, which provide information on the interaction of the hydrogen atoms with the central ion. In the C-O stretching region, the spectra exhibit clear maxima, but dissociation of CO3 •-(H2O)1,2 was surprisingly inefficient. While CO3 •-(H2O)1,2 and CO4 •-(H2O) dissociate via loss of water, CO2 loss is the dominant dissociation channel for CO4 •-(H2O)2. The experimental spectra are compared to calculated spectra within the harmonic approximation and from analysis of molecular dynamics simulations. The simulations support the hypothesis that many isomers contribute to the observed spectrum at finite temperatures. The highly fluxional nature of the clusters is the main reason for the spectral broadening, while water-water hydrogen bonding seems to play a minor role in the doubly hydrated species.

2.
J Chem Phys ; 153(17): 171101, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33167645

RESUMO

A laser vaporization cluster source is coupled to the Fourier-transform ion cyclotron resonance mass spectrometer beamline of the free-electron laser for intracavity experiments. Gas phase metal ions and their oxides (VO2 +, NbO2 +, and TaO2 +) are formed and spectroscopically characterized using IR multiple-photon dissociation spectroscopy via loss of atomic oxygen and overcoming fragmentation energies of 3 eV-6 eV. The signal is observed for all MO2 + fundamental modes: the symmetric and anti-symmetric ν1 and ν3 stretch modes in the 900 cm-1-1000 cm-1 range and the ν2 bending mode in the 300 cm-1-450 cm-1 range. A remarkable substructure is observed for the bending vibration, which is at least partly due to the rovibrational substructure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...