Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE/ACM Trans Comput Biol Bioinform ; 20(5): 2862-2873, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37079419

RESUMO

Analyzing multiple networks is important to understand relevant features among different networks. Although many studies have been conducted for that purpose, not much attention has been paid to the analysis of attractors (i.e., steady states) in multiple networks. Therefore, we study common attractors and similar attractors in multiple networks to uncover hidden similarities and differences among networks using Boolean networks (BNs), where BNs have been used as a mathematical model of genetic networks and neural networks. We define three problems on detecting common attractors and similar attractors, and theoretically analyze the expected number of such objects for random BNs, where we assume that given networks have the same set of nodes (i.e., genes). We also present four methods for solving these problems. Computational experiments on randomly generated BNs are performed to demonstrate the efficiency of our proposed methods. In addition, experiments on a practical biological system, a BN model of the TGF- ß signaling pathway, are performed. The result suggests that common attractors and similar attractors are useful for exploring tumor heterogeneity and homogeneity in eight cancers.


Assuntos
Modelos Genéticos , Neoplasias , Humanos , Algoritmos , Redes Reguladoras de Genes/genética , Neoplasias/genética , Redes Neurais de Computação
2.
FEMS Yeast Res ; 22(1)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35617157

RESUMO

The cell division cycle in eukaryotic cells is a series of highly coordinated molecular interactions that ensure that cell growth, duplication of genetic material, and actual cell division are precisely orchestrated to give rise to two viable progeny cells. Moreover, the cell cycle machinery is responsible for incorporating information about external cues or internal processes that the cell must keep track of to ensure a coordinated, timely progression of all related processes. This is most pronounced in multicellular organisms, but also a cardinal feature in model organisms such as baker's yeast. The complex and integrative behavior is difficult to grasp and requires mathematical modeling to fully understand the quantitative interplay of the single components within the entire system. Here, we present a self-oscillating mathematical model of the yeast cell cycle that comprises all major cyclins and their main regulators. Furthermore, it accounts for the regulation of the cell cycle machinery by a series of external stimuli such as mating pheromones and changes in osmotic pressure or nutrient quality. We demonstrate how the external perturbations modify the dynamics of cell cycle components and how the cell cycle resumes after adaptation to or relief from stress.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Ciclo Celular , Divisão Celular , Ciclinas/genética , Ciclinas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
PLoS Comput Biol ; 18(1): e1009702, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35030172

RESUMO

Boolean networks (BNs) have been developed to describe various biological processes, which requires analysis of attractors, the long-term stable states. While many methods have been proposed to detection and enumeration of attractors, there are no methods which have been demonstrated to be theoretically better than the naive method and be practically used for large biological BNs. Here, we present a novel method to calculate attractors based on a priori information, which works much and verifiably faster than the naive method. We apply the method to two BNs which differ in size, modeling formalism, and biological scope. Despite these differences, the method presented here provides a powerful tool for the analysis of both networks. First, our analysis of a BN studying the effect of the microenvironment during angiogenesis shows that the previously defined microenvironments inducing the specialized phalanx behavior in endothelial cells (ECs) additionally induce stalk behavior. We obtain this result from an extended network version which was previously not analyzed. Second, we were able to heuristically detect attractors in a cell cycle control network formalized as a bipartite Boolean model (bBM) with 3158 nodes. These attractors are directly interpretable in terms of genotype-to-phenotype relationships, allowing network validation equivalent to an in silico mutagenesis screen. Our approach contributes to the development of scalable analysis methods required for whole-cell modeling efforts.


Assuntos
Algoritmos , Biologia Computacional/métodos , Modelos Biológicos , Simulação por Computador , Bases de Dados Genéticas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Mutagênese/genética
4.
NPJ Syst Biol Appl ; 6: 2, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31934349

RESUMO

The metabolic modelling community has established the gold standard for bottom-up systems biology with reconstruction, validation and simulation of mechanistic genome-scale models. Similar methods have not been established for signal transduction networks, where the representation of complexes and internal states leads to scalability issues in both model formulation and execution. While rule- and agent-based methods allow efficient model definition and execution, respectively, model parametrisation introduces an additional layer of uncertainty due to the sparsity of reliably measured parameters. Here, we present a scalable method for parameter-free simulation of mechanistic signal transduction networks. It is based on rxncon and uses a bipartite Boolean logic with separate update rules for reactions and states. Using two generic update rules, we enable translation of any rxncon model into a unique Boolean model, which can be used for network validation and simulation-allowing the prediction of system-level function directly from molecular mechanistic data. Through scalable model definition and simulation, and the independence of quantitative parameters, it opens up for simulation and validation of mechanistic genome-scale models of signal transduction networks.


Assuntos
Modelos Biológicos , Transdução de Sinais , Biologia de Sistemas/métodos , Simulação por Computador , Genoma
5.
Methods Mol Biol ; 1945: 71-118, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30945243

RESUMO

We present a protocol for building, validating, and simulating models of signal transduction networks. These networks are challenging modeling targets due to the combinatorial complexity and sparse data, which have made it a major challenge even to formalize the current knowledge. To address this, the community has developed methods to model biomolecular reaction networks based on site dynamics. The strength of this approach is that reactions and states can be defined at variable resolution, which makes it possible to adapt the model resolution to the empirical data. This improves both scalability and accuracy, making it possible to formalize large models of signal transduction networks. Here, we present a method to build and validate large models of signal transduction networks. The workflow is based on rxncon, the reaction-contingency language. In a five-step process, we create a mechanistic network model, convert it into an executable Boolean model, use the Boolean model to evaluate and improve the network, and finally export the rxncon model into a rule-based format. We provide an introduction to the rxncon language and an annotated, step-by-step protocol for the workflow. Finally, we create a small model of the insulin signaling pathway to illustrate the protocol, together with some of the challenges-and some of their solutions-in modeling signal transduction.


Assuntos
Simulação por Computador , Transdução de Sinais/genética , Software , Biologia de Sistemas/métodos , Modelos Biológicos
6.
Nat Commun ; 10(1): 1308, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30899000

RESUMO

Understanding how cellular functions emerge from the underlying molecular mechanisms is a key challenge in biology. This will require computational models, whose predictive power is expected to increase with coverage and precision of formulation. Genome-scale models revolutionised the metabolic field and made the first whole-cell model possible. However, the lack of genome-scale models of signalling networks blocks the development of eukaryotic whole-cell models. Here, we present a comprehensive mechanistic model of the molecular network that controls the cell division cycle in Saccharomyces cerevisiae. We use rxncon, the reaction-contingency language, to neutralise the scalability issues preventing formulation, visualisation and simulation of signalling networks at the genome-scale. We use parameter-free modelling to validate the network and to predict genotype-to-phenotype relationships down to residue resolution. This mechanistic genome-scale model offers a new perspective on eukaryotic cell cycle control, and opens up for similar models-and eventually whole-cell models-of human cells.


Assuntos
Proteínas de Ciclo Celular/genética , Ciclo Celular/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Modelos Genéticos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/metabolismo , Redes Reguladoras de Genes , Estudos de Associação Genética , Redes e Vias Metabólicas/genética , Linguagens de Programação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Biologia de Sistemas/métodos
7.
Mol Biosyst ; 9(8): 1993-2004, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23636168

RESUMO

One of the first steps towards holistic understanding of cellular networks is the integration of the available information in a human and machine readable format. This network reconstruction process is well established for metabolic networks, and numerous genome wide metabolic reconstructions are already available. Extending these strategies to signalling networks has proven difficult, primarily due to the combinatorial nature of regulatory modifications. The combinatorial nature of possible protein-protein interactions and post translational modifications affects both network size and the correspondence between the reconstructed network and the underlying empirical data. Here, we discuss different approaches to reconstruction of signal transduction networks. We divide the current approaches into topological, specific state based and reaction-contingency based, and discuss their different information content and scalability. The discussion focusses on graphical formats but the points are in general applicable also to mathematical models and databases. While the formats have complementary strengths especially for small networks, reaction-contingency based formats have a number of advantages in the light of global network reconstruction. In particular, they minimise the need for assumptions, maximise the congruence with empirical data, and scale efficiently with network size.


Assuntos
Redes e Vias Metabólicas/genética , Modelos Genéticos , Modelos Estatísticos , Mycoplasma genitalium/genética , Transdução de Sinais/genética , Software , Gráficos por Computador , Simulação por Computador , Bases de Dados Factuais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...