Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 32408, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27581071

RESUMO

Magnetoelectric effect, arising from the interfacial coupling between magnetic and electrical order parameters, has recently emerged as a robust means to electrically manipulate the magnetic properties in multiferroic heterostructures. Challenge remains as finding an energy efficient way to modify the distinct magnetic states in a reliable, reversible, and non-volatile manner. Here we report ferroelectric switching of ferromagnetic resonance in multiferroic bilayers consisting of ultrathin ferromagnetic NiFe and ferroelectric Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) films, where the magnetic anisotropy of NiFe can be electrically modified by low voltages. Ferromagnetic resonance measurements confirm that the interfacial charge-mediated magnetoelectric effect is dominant in NiFe/PLZT heterostructures. Non-volatile modification of ferromagnetic resonance field is demonstrated by applying voltage pulses. The ferroelectric switching of magnetic anisotropy exhibits extensive applications in energy-efficient electronic devices such as magnetoelectric random access memories, magnetic field sensors, and tunable radio frequency (RF)/microwave devices.

2.
Nanoscale ; 7(44): 18489-97, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26331952

RESUMO

A transition in source-drain current vs. back gate voltage (ID-VBG) characteristics from extrinsic polar molecule dominant hysteresis to anti-hysteresis induced by an oxygen deficient surface layer that is intrinsic to the ferroelectric thin films has been observed on graphene field-effect transistors on Pb0.92La0.08Zr0.52Ti0.48O3 gates (GFET/PLZT-Gate) during a vacuum annealing process developed to systematically remove the polar molecules adsorbed on the GFET channel surface. This allows the extrinsic and intrinsic hysteresis on GFET/PLZT-gate devices to detangle and the detection of the dynamic switch of electric dipoles using GFETs, taking advantage of their high gating efficiency on ferroelectric gate. A model of the charge trapping and pinning mechanism is proposed to successfully explain the transition. In response to pulsed VBG trains of positive, negative, as well as alternating polarities, respectively, the source-drain current ID variation is instantaneous with the response amplitude following the ID-VBG loops measured by DC VBG with consideration of the remnant polarization after a given VBG pulse when the gate electric field exceeds the coercive field of the PLZT. A detection sensitivity of around 212 dipole per µm(2) has been demonstrated at room temperature, suggesting the GFET/ferroelectric-gate devices provide a promising high-sensitivity scheme for uncooled detection of electrical dipole dynamic switch.

3.
ACS Appl Mater Interfaces ; 6(24): 22417-22, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25405727

RESUMO

The energy storage properties of Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) films grown via pulsed laser deposition were evaluated at variable film thickness of 125, 250, 500, and 1000 nm. These films show high dielectric permittivity up to ∼1200. Cyclic I-V measurements were used to evaluate the dielectric properties of these thin films, which not only provide the total electric displacement, but also separate contributions from each of the relevant components including electric conductivity (D1), dielectric capacitance (D2), and relaxor-ferroelectric domain switching polarization (P). The results show that, as the film thickness increases, the material transits from a linear dielectric to nonlinear relaxor-ferroelectric. While the energy storage per volume increases with the film thickness, the energy storage efficiency drops from ∼80% to ∼30%. The PLZT films can be optimized for different energy storage applications by tuning the film thickness to optimize between the linear and nonlinear dielectric properties and energy storage efficiency.

4.
ACS Appl Mater Interfaces ; 5(4): 1474-80, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23373765

RESUMO

An acetic-acid-based sol-gel method was used to deposit lead lanthanum zirconate titanate (PLZT, 8/52/48) thin films on either platinized silicon (Pt/Si) or nickel buffered by a lanthanum nickel oxide buffer layer (LNO/Ni). X-ray diffraction and scanning electron microscopy of the samples revealed that dense polycrystalline PLZT thin films formed without apparent defects or secondary phases. The dielectric breakdown strength was greater in PLZT thin films deposited on LNO/Ni compared with those on Pt/Si, leading to better energy storage. Finally, optimized dielectric properties were determined for a 3-µm-thick PLZT/LNO/Ni capacitor for energy storage purposes: DC dielectric breakdown strength of ∼1.6 MV/cm (480 V), energy density of ∼22 J/cc, energy storage efficiency of ∼77%, and permittivity of ∼1100. These values are very stable from room temperature to 150 °C, indicating that cost-effective, volumetrically efficient capacitors can be fabricated for high-power energy storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...