Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxics ; 10(12)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36548631

RESUMO

This study investigated the effects of low molecular weight organic acids (citric acid and malic acid) on the migration properties of nickel in soil. A reclaimed soil sample was obtained from the Panyi Mine in Huainan City, China. The effects of adding different concentrations of Ni, citric acid (CA) and malic acid (MA) were assessed on the migration and transformation of soil Ni forms. The results showed: (1) An increase in soil Ni activity with increasing Ni concentrations. (2) An increased proportion of exchangeable forms of Ni in soil with increased malic acid and citric acid concentrations, effectively promoting Ni mobility. In addition, the active Ni fraction in reclaimed soil increased significantly with increasing concentrations of citric and malic acid. The nickel activation effect of citric acid was found to be higher than that of malic acid. (3) The activation effect of organic acids on Ni weakened with aging, exhibiting a gradual transformation from the loosely bound form of Ni, to the strongly bound form. The results of this study provide a theoretical basis for improving the effectiveness and efficiency of the phytoremediation techniques used for the treatment of Ni-polluted soils.

2.
Front Chem ; 10: 932133, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936083

RESUMO

In order to promote and broaden the utilization of fly ash as a resource, the fly ash from a 2,660-MW coal-fired power plant in Huainan (China) was investigated. The physical and chemical properties of fly ash were characterized by scanning electron microscopy, energy spectrum analysis, and XRD. The content and different forms of the heavy metals Cd, Cr, Cu, Co, and Ni were determined by acid digestion, oscillation leaching, and Tessier five-step extraction. The effect of pH, temperature, and particle size on the leached amount of heavy metals was studied. Finally, the ecological risk index was calculated for each heavy metal via the risk assessment coding (RAC) method and Hakanson ecological risk assessment method, allowing the ecological risk of fly ash to be determined under different environmental conditions. Results showed that the average concentrations of Cd, Cr, Co, and Ni were all below the risk screening values reported for environmental pollutants (pH > 7.5). Under varying pH, temperature, and particle size conditions, the leached amounts (oscillation leaching) were below the soil risk screening values for agricultural land in China. An RAC-Cd value of >50% indicates a high ecological risk, while the RAC values of Co and Ni were between 10 and 30%, indicating a medium ecological risk, and the RAC values of Cr and Cu were <10%, indicating a low ecological risk. With increasing pH, the potential ecological risk index (RI) decreased, with a maximum RI of 59.62 observed at pH 2.8. With increasing temperature, the potential ecological RI increased initially to a maximum of 27.69 at 25°C and then decreased thereafter. With increasing particle size, the ecological RI decreased, with the highest RI of 4.06 occurring at <0.075 mm. The Hakanson ecological RI value was below 150, indicating a slight ecological risk. Therefore, fly ash can be considered as a soil additive and conditioner that is suitable for use in the improvement of reclamation soil in coal mining subsidence areas.

3.
Front Chem ; 10: 934949, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910731

RESUMO

The effect of low-molecular-weight organic acids (citric acid and malic acid) on the migration characteristics of Pb in contaminated soils was explored in this study. Reclaimed soil was collected from the coal gangue hill area of the Panyi mine in Huainan City (China). The effect of citric acid and malic acid on the form of Pb present in the reclaimed soil was analyzed by spiking soil samples and simulating Pb-contaminated soil. The results indicate the following. 1) With increased concentration of exogenous Pb, the activity of Pb in the reclaimed soil was effectively improved. 2) The addition of citric acid and malic acid both resulted in an increased fraction of exchangeable Pb in the soil, which effectively promoted the active Pb fraction. As the concentrations of citric acid and malic acid increased, the active Pb fraction of the reclaimed soil increased accordingly. The Pb activation effect of citric acid was observed to be greater than that of malic acid. 3) With extended soil aging time, the activation effect of organic acids on Pb weakened, with the loosely bound Pb gradually transforming into strongly bound Pb. Chelating agents can activate heavy metals in soil, mainly through the combination of chelating agents and heavy metal ions in the soil solution to form soluble metal chelates, so as to increase the bioavailability of heavy metals in soil to plant roots. Therefore, adding citric acid can be considered as a strategy to enhance the efficiency of reclaimed soil remediation because of the ability of Pb activation.

4.
Materials (Basel) ; 12(18)2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31540186

RESUMO

Copper-based friction material (CFM) and paper-based friction material (PFM) are the two most commonly used clutch friction materials. The friction and wear characteristics of these two kinds of friction materials under dry conditions were investigated by the pin-on-disc test over a broad range of applied loads, rotating speeds and ambient temperatures. Before experiments, the running-in test was conducted to stabilize the coefficient of friction (COF) and wear amount of the test samples. After experiments, the metallographic micrographs of the tested samples were presented to investigate the wear mechanisms. Experimental results showed that both the COF and wear depth of the CFM are much greater than these of PFM. The COF of CFM decreases with the increase of applied load, and changes slightly with the variation of rotating speed, whereas it increases first and then decreases with the increase of ambient temperature. However, the COF of PFM decreases dramatically with the increase of the rotating speed and ambient temperature, while it remains stable at first and then decreases slowly as the applied load increases. Additionally, under such three working conditions, the wear depth of CFM changes linearly, while the wear depth of PFM varies greatly. This study can be used as a guide for selecting friction materials for clutches with different applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...