Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(7)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37512636

RESUMO

This study aims to establish an accurate prediction model using artificial neural networks (ANNs) to effectively and efficiently predict the process-induced warpage of a flip-chip chip-scale package (FCCSP). To enhance model performance, a novel subdomain-based sampling strategy and Taguchi hyperparameter optimization are proposed in the ANN algorithm. To simulate the warpage behavior the FCCSP during fabrication, a process modeling approach is proposed, where the viscoelastic behavior of the epoxy molding compound is included, in which the viscoelastic properties are determined using dynamic mechanical measurement. In addition, the temperature-dependent thermal-mechanical properties of the materials in the FCCSP are assessed through thermal-mechanical analysis and dynamic mechanical analysis. The modeled warpage results are verified by the warpage measurement. Next, warpage parametric analysis is performed to identify the key factors most affecting warpage behavior for use in the construction of the warpage prediction model. Moreover, the advantages of the proposed sampling and hyperparameter tuning approaches are proved by comparing with other existing models, and the validity of the developed ANN-based deep learning warpage prediction model is demonstrated through a validation dataset.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...