Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
EMBO Mol Med ; 16(2): 361-385, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177538

RESUMO

Inflammation in the testes induced by infection and autoimmunity contributes significantly to male infertility, a public health issue. Current therapies using antibiotics and broad-spectrum anti-inflammatory drugs are ineffective against non-bacterial orchitis and induce side effects. This highlights the need to explore the pathogenesis of orchitis and develop alternative therapeutic strategies. In this study, we demonstrated that Gasdermin D (GSDMD) was activated in the testes during uropathogenic Escherichia coli (UPEC)-induced acute orchitis, and that GSDMD in macrophages induced inflammation and affected spermatogenesis during acute and chronic orchitis. In testicular macrophages, GSDMD promoted inflammation and antigen presentation, thereby enhancing the T-cell response after orchitis. Furthermore, the pharmacological inhibition of GSDMD alleviated the symptoms of UPEC-induced acute orchitis. Collectively, these findings provide the first demonstration of GSDMD's role in driving orchitis and suggest that GSDMD may be a potential therapeutic target for treating orchitis.


Assuntos
Orquite , Masculino , Humanos , Orquite/microbiologia , Orquite/patologia , Gasderminas , Apresentação de Antígeno , Inflamação , Macrófagos , Piroptose
2.
Cartilage ; : 19476035231207778, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37997349

RESUMO

OBJECTIVE: MicroRNAs (miRNAs) play a key role in the differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) into chondrocytes. Our previous study found that novel-miR-81 can relieve osteoarthritis, but its role in chondrogenic differentiation of BMSCs remains unclear. The purpose of this study was to explore the role of novel-miR-81 in chondrogenic differentiation of BMSCs. METHODS: We used a model in which transforming growth factor (TGF)-ß3-induced BMSCs differentiation into chondrocytes. We detected the expression Sox9, Collagen Ⅱ, Aggrecan, novel-miR-81, and Rac2 by real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Western blot was performed to detect the expression of Sox9, Collagen Ⅱ, and Rac2. Dual-luciferase reporter gene assay confirmed that the association between novel-miR-81 and Rac2. In addition, the ectopic chondrocyte differentiation of BMSCs was performed subcutaneously in nude mice. The effect of novel-miR-81 and Rac2 on ectopic chondrogenic differentiation of BMSCs was determined by immunohistochemical staining. RESULTS: Novel-miR-81 upregulated in chondrogenic differentiation of BMSCs. Rac2 was a key target of novel-miR-81. Mimic novel-miR-81 and siRac2 upregulated the expression of Sox9, Collagen Ⅱ, and Aggrecan. CONCLUSION: Novel-miR-81 promotes the chondrocytes differentiation of BMSCs by inhibiting the expression of target gene Rac2, which provides potential targets for BMSCs transplantation to repair cartilage defects.

3.
BMC Ophthalmol ; 23(1): 489, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030997

RESUMO

BACKGROUND: Familial exudative vitreoretinopathy (FEVR) is a genetic eye disorder that leads to abnormal development of retinal blood vessels, resulting in vision impairment. This study aims to identify pathogenic variants by targeted exome sequencing in 9 independent pedigrees with FEVR and characterize the novel pathogenic variants by molecular dynamics simulation. METHODS: Clinical data were collected from 9 families with FEVR. The causative genes were screened by targeted next-generation sequencing (TGS) and verified by Sanger sequencing. In silico analyses (SIFT, Polyphen2, Revel, MutationTaster, and GERP + +) were carried out to evaluate the pathogenicity of the variants. Molecular dynamics was simulated to predict protein conformation and flexibility transformation alterations on pathogenesis. Furthermore, molecular docking techniques were employed to explore the interactions and binding properties between LRP5 and DKK1 proteins relevant to the disease. RESULTS: A 44% overall detection rate was achieved with four variants including c.4289delC: p.Pro1431Argfs*8, c.2073G > T: p.Trp691Cys, c.1801G > A: p.Gly601Arg in LRP5 and c.633 T > A: p.Tyr211* in TSPAN12 in 4 unrelated probands. Based on in silico analysis and ACMG standard, two of them, c.4289delC: p.Pro1431Argfs*8 and c.2073G > T: p.Trp691Cys of LRP5 were identified as novel pathogenic variants. Based on computational predictions using molecular dynamics simulations and molecular docking, there are indications that these two variants might lead to alterations in the secondary structure and spatial conformation of the protein, potentially impacting its rigidity and flexibility. Furthermore, these pathogenic variants are speculated to potentially influence hydrogen bonding interactions and could result in an increased binding affinity with the DKK1 protein. CONCLUSIONS: Two novel genetic variants of the LRP5 gene were identified, expanding the range of mutations associated with FEVR. Through molecular dynamics simulations and molecular docking, the potential impact of these variants on protein structure and their interactions with the DKK1 protein has been explored. These findings provide further support for the involvement of these variants in the pathogenesis of the disease.


Assuntos
Oftalmopatias Hereditárias , Doenças Retinianas , Humanos , Vitreorretinopatias Exsudativas Familiares , Doenças Retinianas/genética , Doenças Retinianas/metabolismo , Simulação de Acoplamento Molecular , Oftalmopatias Hereditárias/genética , Tetraspaninas/genética , Análise Mutacional de DNA , Mutação , Linhagem , Fenótipo , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo
4.
Org Biomol Chem ; 21(40): 8094-8097, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37789756

RESUMO

A novel organocatalytic one-pot cascade ether oxidation iminium-ion activation strategy for the synthesis of naphtho[2,1-b]furan-1-carbaldehyde and benzofuran-3-carbaldehyde from high atomic utilization transformation of aryl allyl ethers has been developed. Its synthetic application will provide a new ether oxidation iminium-ion activation cascade tool for the efficient synthesis of complex molecules.

5.
Acta Pharm Sin B ; 13(6): 2663-2679, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37425058

RESUMO

Peripheral bacterial infections without impaired blood-brain barrier integrity have been attributed to the pathogenesis of Parkinson's disease (PD). Peripheral infection promotes innate immune training in microglia and exacerbates neuroinflammation. However, how changes in the peripheral environment mediate microglial training and exacerbation of infection-related PD is unknown. In this study, we demonstrate that GSDMD activation was enhanced in the spleen but not in the CNS of mice primed with low-dose LPS. GSDMD in peripheral myeloid cells promoted microglial immune training, thus exacerbating neuroinflammation and neurodegeneration during PD in an IL-1R-dependent manner. Furthermore, pharmacological inhibition of GSDMD alleviated the symptoms of PD in experimental PD models. Collectively, these findings demonstrate that GSDMD-induced pyroptosis in myeloid cells initiates neuroinflammation by regulating microglial training during infection-related PD. Based on these findings, GSDMD may serve as a therapeutic target for patients with PD.

6.
Adv Sci (Weinh) ; 10(25): e2205180, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37409430

RESUMO

The intestinal epithelium is the fastest renewing tissue in mammals and its regenerative process must be tightly controlled to minimize the risk of dysfunction and tumorigenesis. The orderly expression and activation of Yes-associated protein (YAP) are the key steps in driving intestinal regeneration and crucial for intestinal homeostasis. However, the regulatory mechanisms controlling this process remain largely unknown. Here, it is discovered that evolutionarily conserved signaling intermediate in Toll pathways (ECSIT), a multi-functional protein, is enriched along the crypt-villus axis. Intestinal cell-specific ablation of ECSIT results in the dysregulation of intestinal differentiation unexpectedly accompanied with enhanced YAP protein dependent on translation, thus transforming intestinal cells to early proliferative stem "-like" cells and augmenting intestinal tumorigenesis. Loss of ECSIT leads to metabolic reprogramming in favor of amino acid-based metabolism, which results in demethylation of genes encoding the eukaryotic initiation factor 4F pathway and their increased expression that further promotes YAP translation initiation culminating in intestinal homeostasis imbalance and tumorigenesis. It is also shown that the expression of ECSIT is positively correlated with the survival of patients with colorectal cancer. Together, these results demonstrate the important role of ECSIT in regulating YAP protein translation to control intestinal homeostasis and tumorigenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Transdução de Sinais , Animais , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transformação Celular Neoplásica/genética , Homeostase , Intestinos , Mamíferos/metabolismo
7.
Front Plant Sci ; 14: 1149114, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37235038

RESUMO

Introduction: Soybean is the world's most important cultivated crop, and drought can affect their growth and, eventually, yields. Foliar application of mepiquat chloride (MC) can potentially alleviate the damage caused by drought stress in plants; however, the mechanism of MC regulation of soybean drought response has not been studied. Methods: This study investigated the mechanism of soybean drought response regulation by mepiquat chloride in two varieties of soybean, sensitive Heinong 65 (HN65) and drought-tolerant Heinong44 (HN44), under three treatment scenarios, normal, drought stress, and drought stress + MC conditions. Results and discussion: MC promoted dry matter accumulation under drought stress, reduced plant height, decreased antioxidant enzyme activity, and significantly decreased malondialdehyde content. The light capture processes, photosystems I and II, were inhibited; however, accumulation and upregulation of several amino acids and flavonoids by MC was observed. Multi-omics joint analysis indicated 2-oxocarboxylic acid metabolism and isoflavone biosynthetic pathways to be the core pathways by which MC regulated soybean drought response. Candidate genes such as LOC100816177, SOMT-2, LOC100784120, LOC100797504, LOC100794610, and LOC100819853 were identified to be crucial for the drought resistance of soybeans. Finally, a model was constructed to systematically describe the regulatory mechanism of MC application in soybean under drought stress. This study fills the research gap of MC in the field of soybean resistance.

8.
CNS Neurosci Ther ; 29(7): 2018-2035, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36914567

RESUMO

BACKGROUND: Neuroinflammation has been widely accepted as a cause of the degenerative process. Increasing interest has been devoted to developing intervening therapeutics for preventing neuroinflammation in Parkinson's disease (PD). It is well known that virus infections, including DNA viruses, are associated with an increased risk of PD. In addition, damaged or dying dopaminergic neurons can release dsDNA during PD progression. However, the role of cGAS, a cytosolic dsDNA sensor, in PD progression remains unclear. METHODS: Adult male wild-type mice and age-matched male cGAS knockout (cGas-/- ) mice were treated with MPTP to induce neurotoxic PD model, and then behavioral tests, immunohistochemistry, and ELISA were conducted to compare disease phenotype. Chimeric mice were reconstituted to explore the effects of cGAS deficiency in peripheral immune cells or CNS resident cells on MPTP-induced toxicity. RNA sequencing was used to dissect the mechanistic role of microglial cGAS in MPTP-induced toxicity. cGAS inhibitor administration was conducted to study whether GAS may serve as a therapeutic target. RESULTS: We observed that the cGAS-STING pathway was activated during neuroinflammation in MPTP mouse models of PD. cGAS deficiency in microglia, but not peripheral immune cells, controlled neuroinflammation and neurotoxicity induced by MPTP. Mechanistically, microglial cGAS ablation alleviated the neuronal dysfunction and inflammatory response in astrocytes and microglia by inhibiting antiviral inflammatory signaling. Additionally, the administration of cGAS inhibitors conferred the mice neuroprotection during MPTP exposure. CONCLUSIONS: Collectively, these findings demonstrate microglial cGAS promote neuroinflammation and neurodegeneration during the progression of MPTP-induced PD mouse models and suggest cGAS may serve as a therapeutic target for PD patients. LIMITATIONS OF THE STUDY: Although we demonstrated that cGAS promotes the progression of MPTP-induced PD, this study has limitations. We identified that cGAS in microglia accelerate disease progression of PD by using bone marrow chimeric experiments and analyzing cGAS expression in CNS cells, but evidence would be more straightforward if conditional knockout mice were used. This study contributed to the knowledge of the role of the cGAS pathway in PD pathogenesis; nevertheless, trying more PD animal models in the future will help us to understand the disease progression deeper and explore possible treatments.


Assuntos
Doença de Parkinson , Masculino , Camundongos , Animais , Doença de Parkinson/metabolismo , Microglia , Doenças Neuroinflamatórias , Camundongos Knockout , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/farmacologia , Progressão da Doença , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo
9.
Front Plant Sci ; 14: 1101074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814755

RESUMO

Background: The nitrate regulates soybean nodulation and nitrogen fixation systemically, mainly in inhibiting nodule growth and reducing nodule nitrogenase activity, but the reason for its inhibition is still inconclusive. Methods: The systemic effect of nitrate on nodule structure, function, and carbon distribution in soybean (Glycine max (L.) Merr.) was studied in a dual-root growth system, with both sides inoculated with rhizobia and only one side subjected to nitrate treatment for four days. The non-nodulating side was genetically devoid of the ability to form nodules. Nutrient solutions with nitrogen concentrations of 0, 100, and 200 mg L-1 were applied as KNO3 to the non-nodulating side, while the nodulating side received a nitrogen-free nutrient solution. Carbon partitioning in roots and nodules was monitored using 13C-labelled CO2. Other nodule responses were measured via the estimation of the nitrogenase activity and the microscopic observation of nodule ultrastructure. Results: Elevated concentrations of nitrate applied on the non-nodulating side caused a decrease in the number of bacteroids, fusion of symbiosomes, enlargement of the peribacteroid spaces, and onset of degradation of poly-ß-hydroxybutyrate granules, which is a form of carbon storage in bacteroids. These microscopic observations were associated with a strong decrease in the nitrogenase activity of nodules. Furthermore, our data demonstrate that the assimilated carbon is more likely to be allocated to the non-nodulating roots, as follows from the competition for carbon between the symbiotic and non-symbiotic sides of the dual-root system. Conclusion: We propose that there is no carbon competition between roots and nodules when they are indirectly supplied with nitrate, and that the reduction of carbon fluxes to nodules and roots on the nodulating side is the mechanism by which the plant systemically suppresses nodulation under nitrogen-replete conditions.

10.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674538

RESUMO

Soybean stem elongation and thickening are related to cell wall composition. Plant morphogenesis can be influenced by blue light, which can regulate cell wall structure and composition, and affect stem growth and development. Here, using proteomics and metabolomics, differentially expressed proteins and metabolites of hypocotyls grown in the dark and under blue light were studied to clarify the effects of blue light on the cell wall structure and carbohydrate metabolism pathway of soybean hypocotyls. Results showed that 1120 differential proteins were upregulated and 797 differential proteins were downregulated under blue light treatment, while 63 differential metabolites were upregulated and 36 differential metabolites were downregulated. Blue light promoted the establishment of cell wall structure and composition by regulating the expression of both the enzymes and metabolites related to cell wall structural composition and nonstructural carbohydrates. Thus, under blue light, the cross-sectional area of the hypocotyl and xylem were larger, the longitudinal length of pith cells was smaller, elongation of the soybean hypocotyl was inhibited, and diameter was increased.


Assuntos
Glycine max , Hipocótilo , Hipocótilo/metabolismo , Glycine max/genética , Luz , Parede Celular/metabolismo , Metabolismo dos Carboidratos , Regulação da Expressão Gênica de Plantas
11.
Cell Rep ; 41(4): 111553, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36288704

RESUMO

Tumor microenvironments (TMEs) require co-operation of innate and adaptive immune cells, which influence tumor progression and immunotherapy. Caspase-activated gasdermins facilitate tumor death and promote anti-tumor immunity. How pyroptosis in immune cells affects the TME remains unclear. TME expression of gasdermin D (GSDMD) is highly expressed in antigen-presenting cells (APCs) and correlates with immune checkpoint signatures. Through conditional deletion of GSDMD, we demonstrate that GSDMD in TME APCs restricts anti-tumor immunity during PD-L1 inhibition. Loss of GSDMD in APCs enhances interferon-stimulated genes (ISGs), thereby promoting CD8+ T cell activation in a cGAS-dependent manner. Moreover, pharmacological inhibition of GSDMD-mediated pyroptosis and PD-L1 improve anti-tumor immunity, highlighting the potential of combining GSDMD/PD-L1 inhibition for immunotherapy as a therapeutic strategy.


Assuntos
Antígeno B7-H1 , Microambiente Tumoral , Caspases , Interferons , Nucleotidiltransferases
12.
Plants (Basel) ; 11(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36079664

RESUMO

Drought affects crop developmentnand growth. To explore the physiological effects of drought stress on soybean, HeiNong44 (HN44) and HeiNong65 (HN65) varieties were used as experimental materials and PEG-6000 was used as the osmotic medium. The antioxidant enzyme activity, osmotic adjustment substance content, antioxidant capacity, and endogenous hormone content of the two soybean varieties were studied under different drought degrees and different treatment durations. Drought stress caused significant physiological changes in soybean. The antioxidant enzyme activities, osmoregulation substance content, and total antioxidant capacity (T-AOC) of HN65 and HN44 showed an increasing trend under mild and moderate drought, however, they first increased and then decreased under severe drought conditions. Following the extension of treatment time, malondialdehyde (MDA) showed an increasing trend. As drought increased, gibberellin (GA) content showed a decreasing trend, while abscisic acid (ABA), salicylic acid (SA), and zeatin nucleoside (ZA) content showed an increasing trend. The auxin (IAA) content of the two varieties showed opposite change trends. In short, drought had a significant impact on the physiology of these two soybean varieties; however, overall, the drought resistance of HN65 was lower than that of HN44. This study provides a research theoretical basis for addressing the drought resistance mechanism and the breeding of drought resistant soybean varieties.

13.
Front Plant Sci ; 13: 992036, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119614

RESUMO

The regulatory effects of uneven phosphorus supplies on phosphorus transport in soybean roots are still unclear. To further analyze the regulatory effects of low-phosphorus stress on phosphorus transport in soybean roots and the effects of uneven phosphorus application on the physiological mechanism of phosphorus transport in soybean roots, dual-root soybean plants were prepared via grafting, and a sand culture experiment was performed. From the unfolded cotyledon stage to the initial flowering stage, one side of each dual-root soybean system was irrigated with a low-phosphorus-concentration solution (phosphorus-application [P+] side), and the other side was irrigated with a phosphorus-free nutrient solution (phosphorus-free [P-] side); this setup allowed the study of the effects of different phosphorus supply levels on the expression of genes and proteins and the accumulation of metabolites in soybean roots on the P- side to clarify the method through which phosphorus transport is regulated in soybean roots and to provide a theoretical basis for improving the use rate of phosphorus fertilizer. The results revealed that the unilateral supply of low-concentration phosphorus promoted the uptake of phosphorus by soybean roots and the transport of phosphorus from the P+ side to the P- side. Compared with the normal concentration of phosphorus supply and the phosphorus-free supply, the low concentration phosphorus supply affected the regulation of the metabolic pathways involved in starch and sucrose metabolism, glycolysis, fructose, and mannose metabolism, etc., thereby affecting soybean root phosphorus transport. The low-phosphorus stress inhibited fructose synthesis and sucrose synthase synthesis in the soybean roots and the synthesis of hexokinase (HK) and fructose kinase, which catalyzes the conversion of fructose to fructose-6-phosphate. Low-phosphorus stress promoted the synthesis of sucrose invertase and the conversion of sucrose into maltose by the activity of starch synthase (StS) and stimulated the synthesis of UDPG pyrophosphorylase (UGP) and phosphoglucose isomerase (GP1), which is involved in the conversion of UDP-glucose to glucose-6-phosphate. The phosphorus transport pathway of soybean roots was then affected, which promoted phosphorus allocation to UTP and glucose-6-phosphate. Additionally, low-phosphorus stress hastened glycolysis in the soybean roots and inhibited the synthesis of malic acid, thereby promoting the transport of phosphorus in the roots. In addition, low-phosphorus stress inhibited the synthesis of fructose, mannose, and mannose-1-phosphate and the synthesis of other enzymes involved in phosphorus transport as well as invertase, thereby inhibiting the transport and synthesis of several organic phosphorus-containing compounds.

14.
Contrast Media Mol Imaging ; 2022: 6094409, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935308

RESUMO

Purpose: The aim of this study is to explore the diagnostic value of prostate-specific antigen (PSA) combined with serum miRNA-149 expression in prostate cancer (PCa) by conducting experiments and bioinformatics analysis. Patients and Methods. 50 PCa patients were enrolled on the experimental group from January 2020 to December 2021. 56 patients with benign prostatic hyperplasia (BPH) were selected as the control group at the same time. Real-time fluorescent quantitative PCR was applied to investigate the miRNA-149 expression. PSA was detected by using a chemiluminescence meter using Abbott i4000. Applying bioinformatics analysis, we explored the expression of hsa-miR-149 in PCa in The Cancer Genome Atlas (TCGA) database. Kaplan-Meier analyses were used to evaluate the prognostic value, and the ROC curve was applied. Results: The expression level of miRNA-149 in the PCa group was significantly higher than that in the BPH group (P < 0.05). The PSA level in the PCa group was also significantly higher than that in the BPH group (P < 0.05). TCGA data analysis revealed that PCa tissues had significantly increased hsa-miR-149 expression. The results of survival analysis showed that patients with high expression of hsa-miR-149 had better prognosis. Additionally, the pathological N stage of PCa correlates with the hsa-miR-149 expression level (P = 0.002). According to ROC curve analysis, the region under the curve was 0.653, 95% CI: 0.576-0.730. Conclusion: High expression of serum miRNA-149 is associated with PCa patients. Although combined PSA did not improve the diagnostic efficacy, miRNA-149 has high specificity in the diagnosis of PCa. miRNA-149 might be a novel marker for early diagnosis and prognosis assessment for PCa.


Assuntos
MicroRNAs , Hiperplasia Prostática , Neoplasias da Próstata , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biologia Computacional , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Antígeno Prostático Específico , Hiperplasia Prostática/diagnóstico , Hiperplasia Prostática/genética , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo
15.
Glia ; 70(12): 2409-2425, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35959803

RESUMO

Inflammasome involvement in Parkinson's disease (PD) has been intensively investigated. Absent in melanoma 2 (AIM2) is an essential inflammasome protein known to contribute to the development of several neurological diseases. However, a specific role for AIM2 in PD has not been reported. In this study, we investigated the effect of AIM2 in the N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD model by use of various knockout and bone marrow chimeric mice. The mechanism of action for AIM2 in PD was assessed by RNA-sequencing and in vitro primary microglial transfection. Results were validated in the A30P transgenic mouse model of PD. In the MPTP mouse model, AIM2 activation was found to negatively regulate neuro-inflammation independent of the inflammasome. Microglial AIM2 deficiency exacerbated behavioral and pathological features of both MPTP-induced and transgenic PD mouse models. Mechanistically, AIM2 reduced cyclic GMP-AMP synthase (cGAS)-mediated antiviral-related inflammation by inhibition of AKT-interferon regulatory factor 3 (IRF3) phosphorylation. These results demonstrate microglial AIM2 to inhibit the antiviral-related neuro-inflammation associated with PD and provide for a foundation upon which to identify new therapeutic targets for treatment of the disease.


Assuntos
Melanoma , Doença de Parkinson , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Antivirais/farmacologia , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/farmacologia , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirrolidinas/metabolismo , Pirrolidinas/farmacologia , RNA/metabolismo
16.
Front Plant Sci ; 13: 968496, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035684

RESUMO

Nitrogen (N) inhibits soybean (Glycine max L.) nodulation and N2 fixation. Isoflavones secreted by soybean roots can stimulate signal transduction for symbiotic nodules, thus playing a key role in root nodule development and N2 fixation. The relationship between the inhibition of soybean nodulation, N2 fixation and isoflavones by N is still unclear. In this study, dual-root soybean plants were prepared by grafting, and N or isoflavones were supplied to unilateral roots. The number and dry weight of the soybean nodules, nitrogenase activity, isoflavone concentrations and relative changes in the level of expression of nodulation-related genes were measured to study the response relationship between the N systemic regulation the soybean nodule N2 fixation and changes in the concentrations of isoflavones in its roots. The results showed that N supply to one side of the dual-root soybeans systematically affected the N2 fixation of root nodules on both sides, and this effect began in the early stage of nodulation. Moreover, a unilateral supply of N systematically affected the concentrations of daidzein and genistein on both sides of the roots. The concentrations of isoflavones were consistent with the change trend of soybean root nodule and nodulation-related gene expression level. Treatment with unilateral N or isoflavones affected the soybean nodule N2 fixation and its nodulation-related genes, which had the same response to the changes in concentrations of root isoflavones. N regulates soybean nodulation and N2 fixation by systematically affecting the concentrations of isoflavones in the roots.

17.
Plants (Basel) ; 11(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35684255

RESUMO

With the promotion and popularization of machine cotton-picking, more and more attention has been paid to the selection of early-maturity varieties with compact plant architecture. The type of fruit branch is one of the most important factors affecting plant architecture and early maturity of cotton. Heredity analysis of the cotton fruit branch is beneficial to the breeding of machine-picked cotton. Phenotype analysis showed that the types of fruit branches in cotton are controlled by a single recessive gene. Using an F2 population crossed with Huaxin102 (normal branch) and 04N-11 (nulliplex branch), BSA (Bulked Segregant Analysis) resequencing analysis and GhNB gene cloning in 04N-11, and allelic testing, showed that fruit branch type was controlled by the GhNB gene, located on chromosome D07. Ghnb5, a new recessive genotype of GhNB, was found in 04N-11. Through candidate gene association analysis, SNP 20_15811516_SNV was found to be associated with plant architecture and early maturity in the Xinjiang natural population. The GhNB gene, which is related to early maturity and the plant architecture of cotton, is a branch-type gene of cotton. The 20_15811516_SNV marker, obtained from the Xinjiang natural population, was used for the assisted breeding of machine-picked cotton varieties.

18.
Ann Transl Med ; 10(10): 540, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35722406

RESUMO

Background: There is currently no effective treatment for vascular dementia (VaD). Scalp electroacupuncture (EA) has served clinically as an alternative treatment for VaD, but its mechanism is still unclear. In this study, we investigated the effect of EA at the Baihui (GV 20) and Shenting (GV 24) acupoints on spatial learning and memory ability, and the expression level of microRNA-81 (miR-81), interleukin-16 (IL-16), and postsynaptic density protein-95 (PSD-95) in the frontal cortex of VaD rats. Methods: Male Sprague-Dawley rats were randomly divided into four groups, sham, VaD, non-acupuncture (non-AP) and EA group. The VaD model was established by permanent bilateral occlusion of the common carotid arteries. Morris Water Maze was used to assess the rats' spatial learning and memory. Immunochemistry (IHC), quantitative reverse transcription polymerase chain reaction (qRT-PCR), and western blot analysis were performed to detect the expression level of miR-81, IL-16, and PSD-95. Finally, luciferase assay was used to determine the effect of miR-81 on IL-16 expression in PC12 cells. Results: The space exploration experiment of MWM showed the time and distance of the rat's activities around the platform were decreased in the EA group. Compared to the VaD and non-AP group, the number of terminal deoxynucleotidyl transferase-mediated dUDP nick-end labeling (TUNEL)-positive frontal cortical neurons was significantly decreased in EA group. The number of the PSD-95-positive cells and the miR-81 expression level in the frontal cortical in the EA group was dramatically increased in comparison with the other groups. In the PC12 cell validation experiment, IL-16 expression level was reduced under the condition of the miR-81 mimic treatment, while increased in the miR-81 inhibitor group. The PSD-95 protein level was up-regulated in the small interfering (si)RNA-IL16 group compared to the NC-IL16 groups with or without oxygen/glucose deprivation/reperfusion (OGD/R) conditions (P<0.05). However, this was abolished by miR-81 mimic. Conclusions: In VaD rats, EA may improve spatial learning and memory through miR-81/IL-16/PSD-95 pathway.

19.
Front Plant Sci ; 13: 908889, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755677

RESUMO

In agroecosystems, a plant-usable form of nitrogen is mainly generated by legume-based biological nitrogen fixation, a process that requires phosphorus (P) as an essential nutrient. To investigate the physiological mechanism whereby phosphorus influences soybean nodule nitrogen fixation, soybean root nodules were exposed to four phosphate levels: 1 mg/L (P stress), 11 mg/L (P stress), 31 mg/L (Normal P), and 61 mg/L (High P) then proteome analysis of nodules was conducted to identify phosphorus-associated proteome changes. We found that phosphorus stress-induced ribosomal protein structural changes were associated with altered key root nodule protein synthesis profiles. Importantly, up-regulated expression of peroxidase was observed as an important phosphorus stress-induced nitrogen fixation-associated adaptation that supported two nodule-associated activities: scavenging of reactive oxygen species (ROS) and cell wall growth. In addition, phosphorus transporter (PT) and purple acid phosphatase (PAPs) were up-regulated that regulated phosphorus transport and utilization to maintain phosphorus balance and nitrogen fixation function in phosphorus-stressed root nodules.

20.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269687

RESUMO

The specific mechanisms by which nitrogen affects nodulation and nitrogen fixation in leguminous crops are still unclear. To study the relationship between nitrogen, nodulation and nitrogen fixation in soybeans, dual-root soybean plants with unilateral nodulation were prepared by grafting. At the third trifoliate leaf (V3) to fourth trifoliate leaf (V4) growth stages (for 5 days), nitrogen nutrient solution was added to the non-nodulated side, while nitrogen-free nutrient solution was added to the nodulated side. The experiment was designed to study the effects of exogenous nitrogen on proteins and metabolites in root nodules and provide a theoretical reference for analyzing the physiological mechanisms of the interaction between nitrogen application and nitrogen fixation in soybean root nodules. Compared with no nitrogen treatment, exogenous nitrogen regulated the metabolic pathways of starch and sucrose metabolism, organic acid metabolism, nitrogen metabolism, and amino acid metabolism, among others. Additionally, exogenous nitrogen promoted the synthesis of signaling molecules, including putrescine, nitric oxide, and asparagine in root nodules, and inhibited the transformation of sucrose to malic acid; consequently, the rhizobia lacked energy for nitrogen fixation. In addition, exogenous nitrogen reduced cell wall synthesis in the root nodules, thus inhibiting root nodule growth and nitrogen fixation.


Assuntos
Glycine max , Fixação de Nitrogênio , Regulação da Expressão Gênica de Plantas , Metabolômica , Nitrogênio/metabolismo , Nodulação , Proteômica , Nódulos Radiculares de Plantas/metabolismo , Glycine max/metabolismo , Sacarose/metabolismo , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...