Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 12: 707786, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489896

RESUMO

Microorganisms play a fundamental role in biogeochemical cycling and are highly sensitive to environmental factors, including the physiochemical properties of the soils and the concentrations of heavy metals/metalloids. In this study, high-throughput sequencing of the 16S rRNA gene was used to study the microbial communities of farmland soils in farmland in the vicinity of a lead-zinc smelter. Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, and Gemmatimonadetes were the predominant phyla in the sites of interest. Sphingomonas, Gemmatimonas, Lysobacter, Flavisolibacter, and Chitinophaga were heavy metal-/metalloid-tolerant microbial groups with potential for bioremediation of the heavy metal/metalloid contaminated soils. However, the bacterial diversity was different for the different sites. The contents of heavy metal/metalloid species and the soil properties were studied to evaluate the effect on the soil bacterial communities. The Mantel test revealed that soil pH, total cadmium (T-Cd), and available arsenic played a vital role in determining the structure of the microbial communities. Further, we analyzed statistically the heavy metals/metalloids and the soil properties, and the results revealed that the microbial richness and diversity were regulated mainly by the soil properties, which correlated positively with organic matter and available nitrogen, while available phosphorus and available potassium were negatively correlated. The functional annotation of the prokaryotic taxa (FAPROTAX) method was used to predict the function of the microbial communities. Chemoheterotrophy and airborne chemoheterotrophy of the main microbial community functions were inhibited by soil pH and the heavy metals/metalloids, except in the case of available lead. Mantel tests revealed that T-Cd and available zinc were the dominant factors affecting the functions of the microbial communities. Overall, the research indicated that in contaminated soils, the presence of multiple heavy metals/metalloids, and the soil properties synergistically shaped the structure and function of the microbial communities.

2.
Environ Sci Pollut Res Int ; 28(18): 22359-22371, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33417128

RESUMO

Bioremediation of Cr(VI) by microorganisms has attracted immense research interests. There are three different mechanisms for bioremediation of Cr(VI): biosorption, bioreduction, and biomineralization. Identifying the relative contributions of these different mechanisms to Cr(VI) bioremediation can provide valuable information to enhance the final result. This article explores the corresponding contributions of different mechanisms in the Cr(VI) bioremediation process. To obtain a deeper understanding of each bioremediation mechanism, the corresponding precipitation products were analyzed via different methods. Fourier transform infrared spectrometer (FTIR) analysis showed that Cr(VI) was adsorbed by functional groups in EPS to form a chelate compound. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis determined that the stable Cr(III) compounds and mineral crystals which contain chromium gradually formed during the bioremediation process. High-throughput sequencing technology was applied to monitor microbial community succession. The results showed that the total removal rate of Cr(VI) reached 77.64% in 56 days in 100 mg/L Cr(VI). Bioreduction was the major contributor to the final result, followed by biosorption and biomineralization; their proportions are 69.61%, 19.16%, and 11.23%, respectively. Besides, the high-throughput sequencing data indicated that reductive microorganisms were the dominant flora and that the relative abundance of different reductive microorganism types changes significantly. This work has clarified the contributions of different mechanisms during Cr(VI) bioremediation process and provided a new enhancement strategy for Cr(VI) bioremediation.Graphical abstract.


Assuntos
Biomineralização , Cromo , Biodegradação Ambiental , Cromo/análise , Oxirredução , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...