Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 895744, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35662712

RESUMO

The transcription factor, sterol regulatory element binding protein 1 (SREBP-1), plays important roles in modulating the proliferation, metastasis, or resistance to antitumor agents by promoting cellular lipid metabolism and related cellular glucose-uptake/Warburg Effect. However, the underlying mechanism of SREBP-1 regulating the proliferation or drug-resistance in lung squamous cell carcinoma (LUSC) and the therapeutic strategies targeted to SREBP-1 in LUSC remain unclear. In this study, SREBP-1 was highly expressed in LUSC tissues, compared with the paired non-tumor tissues (the para-tumor tissues). A novel small-molecule inhibitor of SREBP-1, MSI-1 (Ma's inhibitor of SREBP-1), based on natural product monomers, was identified by screening the database of natural products. Treatment with MSI-1 suppressed the activation of SREBP-1-related pathways and the Warburg effect of LUSC cells, as indicated by decreased glucose uptake or glycolysis. Moreover, treatment of MSI-1 enhanced the sensitivity of LUSC cells to antitumor agents. The specificity of MSI-1 on SREBP-1 was confirmed by molecular docking and point-mutation of SPEBP-1. Therefore, MSI-1 improved our understanding of SREBP-1 and provided additional options for the treatment of LUSC.

2.
Cell Signal ; 64: 109391, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31421224

RESUMO

Anlotinib is a novel molecular targeted agent targeting the vascular endothelial growth factor receptor, which differs from the other currently available non-small cell lung cancer (NSCLC) molecular targeted drugs targeting this receptor. Although the application of anlotinib may bring new hope for patients with advanced NSCLC, the cost of treatment is high. The results of this study showed that microRNA-6077 (miR-6077) represses the expression of GLUT1 (glucose transporter 1) and enhances the sensitivity of patient-derived lung adenocarcinoma (AC) cells to anlotinib. The miR-6077, which potentially binds to the 3'untranslated region of GLUT1, was identified and screened by miRDB, an online tool; sequences of miR-6077 were prepared as lentivirus particles. A549 cells (a lung adenocarcinoma cell line) and five patient-derived AC cell lines were infected with control miRNA or miR-6077, and subsequently treated with the indicated concentration of anlotinib. The expression of proteins, such as GLUT1, was determined by western blotting. The antitumor effect of anlotinib was identified through in-vitro (e.g., MTT) or in-vivo methods (e.g., subcutaneous tumor model). Overexpression of miR-6077 repressed the expression of GLUT1 and decreased the glucose uptake, lactate production, or ATP generation in AC cells. In addition, MiR-6077 may enhance the antitumor effect of anlotinib on A549 or patient-derived AC cell lines. Therefore, our results indicated that miR-6077 represses the expression of GLUT1 and enhances the sensitivity of patients-derived lung AC cells to anlotinib.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Transportador de Glucose Tipo 1/metabolismo , Indóis/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , MicroRNAs/fisiologia , Quinolinas/farmacologia , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Células Dendríticas/efeitos dos fármacos , Humanos , Indóis/uso terapêutico , Camundongos Nus , Quinolinas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...