Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 84(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30030230

RESUMO

Nonhomologous end joining (NHEJ) is critical for genome stability because of its roles in double-strand break repair. Ku and ligase D (LigD) are the crucial proteins in this process, and strains expressing Ku and LigD can cyclize linear DNA in vivo Here, we established a proof-of-concept single-homology-arm linear DNA recombination for gene inactivation or genome editing by which cyclization of linear DNA in vivo by NHEJ could be used to generate nonreplicable circular DNA and could allow allelic exchanges between the circular DNA and the chromosome. We achieved this approach in Dietzia sp. strain DQ12-45-1b, which expresses Ku and LigD homologs and presents NHEJ activity. By transforming the strain with a linear DNA single homolog to the sequence in the chromosome, we mutated the genome. This method did not require the screening of suitable plasmids and was easy and time-effective. Bioinformatic analysis showed that more than 20% of prokaryotic organisms contain Ku and LigD, suggesting the wide distribution of NHEJ activities. Moreover, an Escherichia coli strain also showed NHEJ activity when the Ku and LigD of Dietzia sp. DQ12-45-1b were introduced and expressed in it. Therefore, this method may be a widely applicable genome editing tool for diverse prokaryotic organisms, especially for nonmodel microorganisms.IMPORTANCE Many nonmodel Gram-positive bacteria lack efficient genetic manipulation systems, but they express genes encoding Ku and LigD. The NHEJ pathway in Dietzia sp. DQ12-45-1b was evaluated and was used to successfully knock out 11 genes in the genome. Since bioinformatic studies revealed that the putative genes encoding Ku and LigD ubiquitously exist in phylogenetically diverse bacteria and archaea, the single-homology-arm linear DNA recombination by the NHEJ pathway could be a potentially applicable genetic manipulation method for diverse nonmodel prokaryotic organisms.


Assuntos
Actinomycetales/genética , Reparo do DNA por Junção de Extremidades , Edição de Genes/métodos , Inativação Gênica , Recombinação Genética , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Genoma Bacteriano , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...