Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 118(4): 1218-1231, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38323895

RESUMO

Borneol, camphor, and bornyl acetate are highly promising monoterpenoids widely used in medicine, flavor, food, and chemical applications. Bornyl diphosphate (BPP) serves as a common precursor for the biosynthesis of these monoterpenoids. Although bornyl diphosphate synthase (BPPS) that catalyzes the cyclization of geranyl diphosphate (GPP) to BPP has been identified in multiple plants, the enzyme responsible for the hydrolysis of BPP to produce borneol has not been reported. Here, we conducted in vitro and in vivo functional characterization to identify the Nudix hydrolase WvNUDX24 from W. villosa, which specifically catalyzes the hydrolysis of BPP to generate bornyl phosphate (BP), and then BP forms borneol under the action of phosphatase. Subcellular localization experiments indicated that the hydrolysis of BPP likely occurs in the cytoplasm. Furthermore, site-directed mutagenesis experiments revealed that four critical residues (R84, S96, P98, and G99) for the hydrolysis activity of WvNUDX24. Additionally, the functional identification of phosphatidic acid phosphatase (PAP) demonstrated that WvPAP5 and WvPAP10 were able to hydrolyze geranylgeranyl diphosphate (GGPP) and farnesyl diphosphate (FPP) to generate geranylgeranyl phosphate (GGP) and farnesyl phosphate (FP), respectively, but could not hydrolyze BPP, GPP, and neryl diphosphate (NPP) to produce corresponding monophosphate products. These findings highlight the essential role of WvNUDX24 in the first step of BPP hydrolysis to produce borneol and provide genetic elements for the production of BPP-related terpenoids through plant metabolic engineering and synthetic biology.


Assuntos
Canfanos , Nudix Hidrolases , Proteínas de Plantas , Pirofosfatases , Pirofosfatases/metabolismo , Pirofosfatases/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Canfanos/metabolismo , Brassicaceae/genética , Brassicaceae/enzimologia , Brassicaceae/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo
2.
Plant Physiol ; 193(2): 1244-1262, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37427874

RESUMO

Wurfbainia longiligularis and Wurfbainia villosa are both rich in volatile terpenoids and are 2 primary plant sources of Fructus Amomi used for curing gastrointestinal diseases. Metabolomic profiling has demonstrated that bornyl diphosphate (BPP)-related terpenoids are more abundant in the W. villosa seeds and have a wider tissue distribution in W. longiligularis. To explore the genetic mechanisms underlying the volatile terpenoid divergence, a high-quality chromosome-level genome of W. longiligularis (2.29 Gb, contig N50 of 80.39 Mb) was assembled. Functional characterization of 17 terpene synthases (WlTPSs) revealed that WlBPPS, along with WlTPS 24/26/28 with bornyl diphosphate synthase (BPPS) activity, contributes to the wider tissue distribution of BPP-related terpenoids in W. longiligularis compared to W. villosa. Furthermore, transgenic Nicotiana tabacum showed that the GCN4-motif element positively regulates seed expression of WvBPPS and thus promotes the enrichment of BPP-related terpenoids in W. villosa seeds. Systematic identification and analysis of candidate TPS in 29 monocot plants from 16 families indicated that substantial expansion of TPS-a and TPS-b subfamily genes in Zingiberaceae may have driven increased diversity and production of volatile terpenoids. Evolutionary analysis and functional identification of BPPS genes showed that BPP-related terpenoids may be distributed only in the Zingiberaceae of monocot plants. This research provides valuable genomic resources for breeding and improving Fructus Amomi with medicinal and edible value and sheds light on the evolution of terpenoid biosynthesis in Zingiberaceae.


Assuntos
Alquil e Aril Transferases , Terpenos , Humanos , Terpenos/metabolismo , Difosfatos , Melhoramento Vegetal , Frutas/genética , Frutas/metabolismo , Plantas/metabolismo , Alquil e Aril Transferases/genética
3.
Plant J ; 112(3): 630-645, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36071028

RESUMO

Wurfbainia villosa is a well-known medicinal and edible plant that is widely cultivated in the Lingnan region of China. Its dried fruits (called Fructus Amomi) are broadly used in traditional Chinese medicine for curing gastrointestinal diseases and are rich in volatile terpenoids. Here, we report a high-quality chromosome-level genome assembly of W. villosa with a total size of approximately 2.80 Gb, 42 588 protein-coding genes, and a very high percentage of repetitive sequences (87.23%). Genome analysis showed that W. villosa likely experienced a recent whole-genome duplication event prior to the W. villosa-Zingiber officinale divergence (approximately 11 million years ago), and a recent burst of long terminal repeat insertions afterward. The W. villosa genome enabled the identification of 17 genes involved in the terpenoid skeleton biosynthesis pathway and 66 terpene synthase (TPS) genes. We found that tandem duplication events have an important contribution to the expansion of WvTPSs, which likely drove the production of volatile terpenoids. In addition, functional characterization of 18 WvTPSs, focusing on the TPS-a and TPS-b subfamilies, showed that most of these WvTPSs are multi-product TPS and are predominantly expressed in seeds. The present study provides insights into the genome evolution and the molecular basis of the volatile terpenoids diversity in W. villosa. The genome sequence also represents valuable resources for the functional gene research and molecular breeding of W. villosa.


Assuntos
Alquil e Aril Transferases , Alquil e Aril Transferases/genética , Terpenos/metabolismo , Plantas/metabolismo , Cromossomos
4.
Plant Physiol ; 190(4): 2122-2136, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-35947689

RESUMO

Linarin (acacetin-7-O-rutinoside), isorhoifolin (apigenin-7-O-rutinoside), and diosmin (diosmetin-7-O-rutinoside) are chemically and structurally similar flavone rutinoside (FR) compounds found in Chrysanthemum L. (Anthemideae, Asteraceae) plants. However, their biosynthetic pathways remain largely unknown. In this study, we cloned and compared FRs and genes encoding rhamnosyltransferases (RhaTs) among eight accessions of Chrysanthemum polyploids. We also biochemically characterized RhaTs of Chrysanthemum plants and Citrus (Citrus sinensis and Citrus maxima). RhaTs from these two genera are substrate-promiscuous enzymes catalyzing the rhamnosylation of flavones, flavanones, and flavonols. Substrate specificity analysis revealed that Chrysanthemum 1,6RhaTs preferred flavone glucosides (e.g. acacetin-7-O-glucoside), whereas Cs1,6RhaT preferred flavanone glucosides. The nonsynonymous substitutions of RhaTs found in some cytotypes of diploids resulted in the loss of catalytic function. Phylogenetic analysis and specialized pathways responsible for the biosynthesis of major flavonoids in Chrysanthemum and Citrus revealed that rhamnosylation activity might share a common evolutionary origin. Overexpression of RhaT in hairy roots resulted in 13-, 2-, and 5-fold increases in linarin, isorhoifolin, and diosmin contents, respectively, indicating that RhaT is mainly involved in the biosynthesis of linarin. Our findings not only suggest that the substrate promiscuity of RhaTs contributes to the diversity of FRs in Chrysanthemum species but also shed light on the evolution of flavone and flavanone rutinosides in distant taxa.


Assuntos
Chrysanthemum , Citrus , Diosmina , Flavonas , Chrysanthemum/genética , Chrysanthemum/química , Filogenia , Flavonoides , Flavonas/química , Glucosídeos/química
5.
Planta ; 255(6): 122, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35554686

RESUMO

MAIN CONCLUSION: AaZFP1, a C2H2-type transcription factor, was found to bind the AGT-N1-10-AGT box of AaIPPI1pro and activate the expression of AaIPPI1 involved in artemisinin biosynthesis. Artemisinin, an endoperoxide sesquiterpene lactone, is a widely used antimalarial drug isolated from Artemisia annua L. Isopentenyl pyrophosphate isomerase (AaIPPI1) catalyzes the interconversion of isopentenyl diphosphate and dimethylallyl diphosphate and is the key gene involved in the biosynthesis of artemisinin. However, the AaIPPI1 gene regulation network remains largely unknown. Here, we isolated the AaIPPI1 promoter (AaIPPI1pro) and predicted that it contains cis-elements involved in stress responses, including the TGACG motif (a methyl jasmonate-responsive element), GARE motif (a gibberellin-responsive element), ABRE (an abscisic acid-responsive element), TC-rich repeats (a stress-responsive element), and the AGT-N1-10-AGT box, which is the binding site of Cys/His2 zinc finger protein (C2H2 ZFP). The C2H2 ZFP gene AaZFP1 was discovered by screening a cDNA library using AaIPPI1pro as bait in yeast. AaZFP1 contains two conserved C2H2 regions, a nuclear localization domain (B box), a Leu-rich domain (L box), and a conserved DLN sequence (DLN box) close to its C terminus. A subcellular localization assay indicated that AaZFP1 protein is localized in the nucleus and cytoplasm. An electrophoretic mobility shift assay demonstrated that AaZFP1 binds to the AGT-N1-10-AGT box of AaIPPI1pro. A dual-luciferase assay indicated that AaZFP1 enhanced the promoter activity of AaIPPI1 in vivo. Transient overexpression of AaZFP1 in A. annua increased the expression of AaIPPI1 and the content of artemisinin. Our data demonstrated that AaZFP1 functions as a transcriptional activator that regulates the expression of AaIPPI1 by directly binding to its promoter. The present study provides insights into the transcriptional regulation of genes involved in artemisinin biosynthesis in A. annua.


Assuntos
Artemisia annua , Artemisininas , Dedos de Zinco CYS2-HIS2 , Ácido Abscísico/metabolismo , Artemisia annua/genética , Artemisia annua/metabolismo , Artemisininas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Front Plant Sci ; 10: 1370, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737005

RESUMO

Climate change and geography affect all the living organisms. To date, the effects of climate and geographical factors on plant metabolome largely remain open for worldwide and local investigations. In this study, we designed field experiments with tobacco (Nicotiana tabacum) in India versus USA and used untargeted metabolomics to understand the association of two weather factors and two different continental locations with respect to tobacco metabolism. Field research stations in Oxford, North Carolina, USA, and Rajahmundry, Andhra Pradesh India were selected to grow a commercial tobacco genotype (K326) for 2 years. Plant growth, field management, and leaf curing followed protocols standardized for tobacco cultivation. Gas chromatography-mass spectrometry based unbiased profiling annotated 171 non-polar and 225 polar metabolites from cured tobacco leaves. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) showed that two growing years and two field locations played primary and secondary roles affecting metabolite profiles, respectively. PCA and Pearson analysis, which used nicotine, 11 other groups of metabolites, two locations, temperatures, and precipitation, revealed that in North Carolina, temperature changes were positively associated with the profiles of sesquiterpenes, diterpenes, and triterpenes, but negatively associated with the profiles of nicotine, organic acids of tricarboxylic acid, and sugars; in addition, precipitation was positively associated with the profiles of triterpenes. In India, temperature was positively associated with the profiles of benzenes and polycyclic aromatic hydrocarbons, but negatively associated with the profiles of amino acids and sugar. Further comparative analysis revealed that nicotine levels were affected by weather conditions, nevertheless, its trend in leaves was independent of two geographical locations and weather changes. All these findings suggested that climate and geographical variation significantly differentiated the tobacco metabolism.

7.
Mol Plant ; 8(11): 1580-98, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26192869

RESUMO

Scenarios of genes to metabolites in Artemisia annua remain uninvestigated. Here, we report the use of an integrated approach combining metabolomics, transcriptomics, and gene function analyses to characterize gene-to-terpene and terpene pathway scenarios in a self-pollinating variety of this species. Eighty-eight metabolites including 22 sesquiterpenes (e.g., artemisinin), 26 monoterpenes, two triterpenes, one diterpene and 38 other non-polar metabolites were identified from 14 tissues. These metabolites were differentially produced by leaves and flowers at lower to higher positions. Sequences from cDNA libraries of six tissues were assembled into 18 871 contigs and genome-wide gene expression profiles in tissues were strongly associated with developmental stages and spatial specificities. Sequence mining identified 47 genes that mapped to the artemisinin, non-amorphadiene sesquiterpene, monoterpene, triterpene, 2-C-methyl-D-erythritol 4-phosphate and mevalonate pathways. Pearson correlation analysis resulted in network integration that characterized significant correlations of gene-to-gene expression patterns and gene expression-to-metabolite levels in six tissues simultaneously. More importantly, manipulations of amorpha-4,11-diene synthase gene expression not only affected the activity of this pathway toward artemisinin, artemisinic acid, and arteannuin b but also altered non-amorphadiene sesquiterpene and genome-wide volatile profiles. Such gene-to-terpene landscapes associated with different tissues are fundamental to the metabolic engineering of artemisinin.


Assuntos
Artemisia annua/metabolismo , Polinização , Autofertilização , Terpenos/metabolismo , Artemisia annua/genética , Artemisininas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica , Genes de Plantas , Metabolômica , Polinização/genética , Autofertilização/genética
8.
J Ethnopharmacol ; 165: 9-19, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25704929

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: "Shengyu" decoction, a traditional Chinese medicine, has been used to treat diseases with deficit in "qi" and "blood". The modified "Shengyu" decoction (MSD) used in the present study was designed to treat traumatic brain injury (TBI) on the basis of the "Shengyu" decoction, in which additional four herbs were added. Many ingredients in these herbs have been demonstrated to be effective for the treatment of brain injury. The present study was performed to evaluate the neurorestorative effect and the underlying mechanisms of MSD on the rat brain after a TBI. MATERIALS AND METHODS: TBI was induced in the right cerebral cortex of adult rats using Feeney's weight-drop method. Intragastrical administration of MSD (1.0 ml/200 g) was begun 6h after TBI. The neurological functions and neuronal loss in the cortex and hippocampus were determined. The levels of nerve growth-related factors GDNF, NGF, NCAM, TN-C, and Nogo-A and the number of GFAP(+)/GDNF(+), BrdU(+)/nestin(+), BrdU(+)/NeuN(+) immunoreactive cells in the brain ipsilateral to TBI were also measured. Moreover, the influences of MSD on these variables were observed at the same time. RESULTS: We found that treatment with MSD in TBI rats ameliorated the neurological functions and alleviated neuronal loss. MSD treatment elevated the expression of GDNF, NGF, NCAM, and TN-C, and inhibited the expression of Nogo-A. Moreover, MSD treatment increased the number of GFAP(+)/GDNF(+), BrdU(+)/nestin(+), and BrdU(+)/NeuN(+) immunoreactive cells in the cortex and hippocampus. CONCLUSION: The present results suggest that MSD treatment in TBI rats could improve the proliferation of neural stem/progenitor cells and differentiation into neurons, which may facilitate neural regeneration and tissue repair and thus contribute to the recovery of neurological functions. These effects of modified "Shengyu" decoction may provide a foundation for the use of MSD as a prescription of medicinal herbs in the traditional medicine to treat brain injuries in order to improve the neurorestoration.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa/métodos , Células-Tronco Neurais/efeitos dos fármacos , Animais , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/lesões , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Masculino , Regeneração Nervosa/efeitos dos fármacos , Células-Tronco Neurais/fisiologia , Ratos , Ratos Sprague-Dawley
9.
J Ethnopharmacol ; 151(1): 694-703, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24296086

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: "Shengyu" decoction, a traditional Chinese medicine, has been used to treat diseases with deficit in "qi" and "blood" induced frequently by profound loss of blood or by long sores with heavy pus, in which a potential anti-inflammatory effect is implied. The modified "Shengyu" decoction (MSD) used in the present study was designed on the basis of the "Shengyu" decoction, additional four herbs were added in. Many ingredients in these herbs have been demonstrated to be anti-inflammatory and thus MSD may be used for the treatment of traumatic brain injury (TBI). To evaluate the neuroprotective effect and the underlying mechanisms of MSD on the rat brain after TBI. MATERIALS AND METHODS: TBI was induced in the right cerebral cortex of male adult rats using Feeney's weight-drop method. The rats were administered a gavage of MSD (0.5, 1.0 or 2.0 ml/200 g) 6h after TBI. The neurological functions, brain water content, contusion volume, and neuron loss were determined. The levels of TNF-α, IL-1ß, IL-6, and IL-10 and the number of GFAP- and Iba1-positive cells in the brain ipsilateral to TBI were also measured. Moreover, the influence of MSD on these variables was observed at the same time. RESULTS: The neurological deficits, brain water content, and neuron loss were significantly reduced after 1.0 or 2.0 ml/200 g of MSD treatment but not after 0.5 ml/200 g. In addition, treatment with MSD (1.0 ml/200 g) significantly increased the level of IL-10 and reduced the level of TNF-α and IL-1ß and the number of GFAP- and Iba1-positive cells after TBI. However, the contusion volume of brain tissue and the expression of IL-6 were not significantly changed. CONCLUSION: MSD may be a potential therapeutic for the treatment of TBI because MSD alleviated secondary brain injury induced by TBI. In addition, MSD inhibited the inflammatory response through reducing the expression of inflammatory cytokines and the activation of microglial cells and astrocytes in the brain tissue of rats after TBI. Therefore, a potential anti-inflammatory mechanism of the "Shengyu" decoction was confirmed, which may be one of the main reasons of "Shengyu" decoction used to treat diseases with obvious inflammatory responses.


Assuntos
Anti-Inflamatórios/uso terapêutico , Lesões Encefálicas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Animais , Química Encefálica , Ensaio de Imunoadsorção Enzimática , Masculino , Fármacos Neuroprotetores , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Água/química
10.
Plant Cell Rep ; 28(7): 1127-35, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19521701

RESUMO

This paper provides evidence that salicylic acid (SA) can activate artemisinin biosynthesis in Artemisia annua L. Exogenous application of SA to A. annua leaves was followed by a burst of reactive oxygen species (ROS) and the conversion of dihydroartemisinic acid into artemisinin. In the 24 h after application, SA application led to a gradual increase in the expression of the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene and a temporary peak in the expression of the amorpha-4,11-diene synthase (ADS) gene. However, the expression of the farnesyl diphosphate synthase (FDS) gene and the cytochrome P450 monooxygenase (CYP71AV1) gene showed little change. At 96 h after SA (1.0 mM) treatment, the concentration of artemisinin, artemisinic acid and dihydroartemisinic acid were 54, 127 and 72% higher than that of the control, respectively. Taken together, these results suggest that SA induces artemisinin biosynthesis in at least two ways: by increasing the conversion of dihydroartemisinic acid into artemisinin caused by the burst of ROS, and by up-regulating the expression of genes involved in artemisinin biosynthesis.


Assuntos
Artemisia annua/enzimologia , Artemisininas/metabolismo , Proteínas de Plantas/metabolismo , Ácido Salicílico/farmacologia , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Artemisia annua/efeitos dos fármacos , Artemisia annua/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Geraniltranstransferase/genética , Geraniltranstransferase/metabolismo , Hidroximetilglutaril-CoA-Redutases NADP-Dependentes/genética , Hidroximetilglutaril-CoA-Redutases NADP-Dependentes/metabolismo , Estrutura Molecular , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo
11.
Planta ; 229(5): 1077-86, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19225805

RESUMO

Benzalacetone synthase (BAS) is a member of the plant-specific type III PKS superfamily that catalyzes a one-step decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce p-hydroxybenzalacetone. In our recent work (Ma et al. in Planta 229(3):457-469, 2008), a three-intron type III PKS gene (PcPKS2) was isolated from Polygonum cuspidatum Sieb. et Zucc. Phylogenetic and functional analyses revealed this recombinant PcPKS2 to be a BAS. In this study, another three-intron type III PKS gene (PcPKS1) and its corresponding cDNA were isolated from P. cuspidatum. Sequence and phylogenetic analyses demonstrated that PcPKS1 is a chalcone sythase (CHS). However, functional and enzymatic analyses showed that recombinant PcPKS1 is a bifunctional enzyme with both, CHS and BAS activity. DNA gel blot analysis indicated that there are two to four CHS copies in the P. cuspidatum genome. RNA gel blot analysis revealed that PcPKS1 is highly expressed in the rhizomes and in young leaves, but not in the roots of the plant. PcPKS1 transcripts in leaves were inducible by pathogen infection and wounding. BAS is thought to play a crucial role in the construction of the C(6)-C(4) moiety found in a variety of phenylbutanoids, yet so far phenylbutanoids have not been isolated from P. cuspidatum. However, since PcPKS1 and PcPKS2 (Ma et al. in Planta 229(3):457-469, 2008) have been identified in P. cuspidatum, it is possible that such compounds are also produced in that plant, albeit in low concentrations.


Assuntos
Acetona/metabolismo , Aciltransferases/genética , Fallopia japonica/enzimologia , Fallopia japonica/genética , Flavanonas/biossíntese , Genes de Plantas , Íntrons/genética , Acetona/química , Aciltransferases/química , Aciltransferases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Cromatografia Líquida de Alta Pressão , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Flavanonas/química , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Filogenia , Proteínas Recombinantes/metabolismo , Análise de Sequência , Especificidade por Substrato
12.
Zhongguo Zhen Jiu ; 25(3): 217-20, 2005 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-16312937

RESUMO

OBJECTIVE: To observe effects of electroacupuncture of different frequencies on morphological changes of nervous tissues and electromyogram (EMG) of skeletal muscles in regeneration,so as to find more proper parameters of electroacupuncture. METHODS: The nerve regeneration chamber was built after the sciatic nerve was transected, and acupuncture was given at "Huantiao" (GB 30) , "Zusanli" (ST 36) and "Sanyinjiao" (SP 6) at the affected side with different frequencies (5 Hz, 100 Hz), 30 min each time,once every other day, 3 time each week, for 20 weeks and a control group was set up for natural recovery. The nerve fibers were stained by silver dying and ultrastructures of nerve tissues were observed. EMG of gastrocnemius was determined by Biopac physiologic apparatus. RESULTS: Electroacupuncture could promote the recovery of form of nerve tissues after the transection of sciatic nerve and functions of de-innervated muscle tissues after lesion of sciatic nerve, and the therapeutic effect of electroacupuncture at 5 Hz was the best. CONCLUSION: Electroacupuncture is an important way of promoting the regeneration of the lessoned peripheral nerve.


Assuntos
Eletroacupuntura , Nervo Isquiático , Terapia por Acupuntura , Animais , Eletromiografia , Músculo Esquelético , Ratos , Ratos Sprague-Dawley
13.
Biomaterials ; 24(21): 3859-68, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12818559

RESUMO

The objective of this study was to investigate the efficiency of two treatments for poly(L-lactic acid) (PLLA) surface modification with chitosan, via entrapment and coupling by using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide. The properties of original PLLA films, chitosan-entrapped and coupled PLLA films were investigated by water contact angle measurement and electron spectroscopy for chemical analysis (ESCA). The contact angle indicated the change in hydrophilicity and the ESCA data suggested that the modified PLLA films became enriched with nitrogen atoms. The cytocompatibility of modified PLLA films might be improved. Therefore, the attachment and proliferation of bovine articular chondrocyte seeded on modified PLLA films and control one were examined. A whole cell enzyme-linked immunosorbent assay (Cell ELISA) that detects the BrdU incorporation during DNA synthesis and collagen type II secretion was applied to evaluate the chondrocytes on different PLLA films and tissue culture plates. Cell viability was estimated by the MTT assay and cell function were assessed by measuring sulfated glycosaminoglycan secreted by chondrocytes. These results implied that chitosan used to modify PLLA surface through entrapment and coupling could enhance the chondrocyte adhesion, proliferation and function.


Assuntos
Materiais Biocompatíveis/química , Cartilagem Articular/citologia , Quitina/análogos & derivados , Quitina/química , Condrócitos/citologia , Ácido Láctico/química , Polímeros/química , Animais , Bromodesoxiuridina/farmacologia , Cartilagem Articular/efeitos dos fármacos , Bovinos , Adesão Celular , Divisão Celular , Sobrevivência Celular , Quitosana , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Colágeno/química , Corantes/farmacologia , DNA/química , Ensaio de Imunoadsorção Enzimática , Glicosaminoglicanos/metabolismo , Técnicas In Vitro , Microscopia Eletrônica de Varredura , Nitrogênio/química , Poliésteres , Propriedades de Superfície , Sais de Tetrazólio/química , Sais de Tetrazólio/farmacologia , Tiazóis/química , Tiazóis/farmacologia , Fatores de Tempo , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...