Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
FASEB J ; : fj201701386, 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29932870

RESUMO

Neuroblastoma is the most common cancer in infants and the third most common cancer in children after leukemia and brain cancer. The purpose of our study was to investigate the effects of estrogen receptor (ER)-α36 gene silencing on tau protein phosphorylation, cell proliferation, and cell apoptosis in human neuroblastoma SH-SY5Y cells. SH-SY5Y cells were treated with estrogen or left untreated, to investigate the effects of estrogen stimulation on ERα36 and the ERK/protein B kinase (AKT) signaling pathway. ERα36 mRNA expressions were detected by quantitative RT-PCR. A phosphatase kit was used to test protein phosphatase (PP)-2A activity before and after treatment. Western blot analysis was conducted to detect protein expression of ERα36; tau protein; phosphorylated- tau (p-tau) at site Thr231 [p-tau (Thr231)]; glycogen synthase kinase (GSK)3ß and its specificity sites (Tyr216 and Ser9); Cyclin Dl; proliferating cell nuclear antigen (PCNA); B-cell lymphoma (Bcl)-2; and Bcl-2-associated X protein (Bax). A cell-counting kit (CCK)-8 assay was used to determine cell viability. Cell apoptosis and rate of tumor growth and volume were determined by Annexin V-FITC/PI staining and a xenotransplanted tumor model in nude mice. Results show that without estrogen stimulation, ERα36 was inactivated. When stimulated by estrogen, expression of ERα36, PP2A, p-GSK3ß (Ser9)/total protein ( t)-GSK3ß, Cyclin Dl, PCNA, and Bcl-2 were up-regulated, and p-GSK3ß (Tyr216)/ t-GSK3ß expression was down-regulated, as was p-tau (Thr231) and Bax expression. The expression of p-ERK/ERK, p-AKT/AKT, p-methyl ethyl ketone (MEK)/MEK, and p-mammalian target of rapamycin (mTOR)/mTOR expression was up-regulated, suggesting that the ERK/AKT signaling pathway is activated. Cell proliferation was also accelerated, whereas apoptosis was inhibited with stimulation by estrogen. However, we found that the effects of silencing ERα36 on the expression of related intracellular factors had no association with estrogen. Our study demonstrates that ERα36 gene silencing can inhibit the activation of the ERK/AKT signaling pathway, increase tau protein phosphorylation, decrease cell vitality and tumorigenicity, and promote apoptosis of human neuroblastoma SH-SY5Y cells.-Wang, H.-B., Li, T., Ma, D.-Z., Zhi, H. ERα36 gene silencing promotes tau protein phosphorylation, inhibits cell proliferation, and induces apoptosis in human neuroblastoma SH-SY5Y cells.

3.
Biomed Pharmacother ; 93: 1-7, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28618251

RESUMO

INTRODUCTION: The study aimed at exploring the effects involved in Fas-Associated protein with Death Domain (FADD) expression and cysteine-aspartic acid specific protease-8 (Caspase-8) in relation to the proliferation and apoptosis of human glioblastoma (GBM) cells. MATERIAL AND METHODS: 93 GBM tissues and 64 normal brain tissues were the central mediums used for the investigation of the study. Cultured human GBM SC189 cells were divided into separate groups including the blank negative control (NC), FADD and Caspase-8 groups. The mRNA and protein expressions of FADD and Caspase-8 in tissues and human glioblastoma (GBM) cells were detected using qRT-PCR and Western blotting techniques. Cell proliferation was tested by CCK-8. Flow cytometry was used for the measure of cell cycle and apoptosis rates. RESULTS: The mRNA and protein expressions of FADD and Caspase-8 in GBM tissues were less than the levels of expression displayed in normal brain tissues. Correlations between the expressions of FADD and Caspase-8 in GBM tissues were analyzed as being linked with the clinical grades of GBM patients. Patients in stage III+IV displayed lower expressions of FADD and Caspase-8 than patients in stage I+II. In comparison with the blank group, the FADD and Caspase-8 groups showed decreased proliferation rates of SHG44 cells and lower ratios of cells in the S phase and Bcl-2 expression. Greater ratios of cells in the G0/G1 stage as well as increased cell apoptosis and expressions of Caspase-8 and Bax were exhibited. The expression of FADD in the FADD group was higher than the blank group, however no significant differences in FADD expression was observed between the blank and Caspase-8 groups. CONCLUSION: The data obtained during the study demonstrated that overexpression of FADD and Caspase-8 suppresses proliferation whilst promoting the apoptosis of human GBM cells.


Assuntos
Apoptose/genética , Caspase 8/genética , Proliferação de Células/genética , Proteína de Domínio de Morte Associada a Fas/genética , Glioblastoma/genética , Adulto , Idoso , Estudos de Casos e Controles , Ciclo Celular/genética , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/genética , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA