Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38712196

RESUMO

Background and Aims: Recent studies have highlighted the beneficial effect of resolvin D1 (RvD1), a DHA-derived specialized pro-resolving mediator, on metabolic dysfunction-associated steatohepatitis (MASH), but the underlying mechanisms are not well understood. Our study aims to determine the mechanism by which RvD1 protects against MASH progression. Methods: RvD1 was administered to mice with experimental MASH, followed by bulk and single-cell RNA sequencing analysis. Primary cells including bone marrow-derived macrophages (BMDMs), Kupffer cells, T cells, and primary hepatocytes were isolated to elucidate the effect of RvD1 on inflammation, cell death, and fibrosis regression genes. Results: Hepatic tissue levels of RvD1 were decreased in murine and human MASH, likely due to an expansion of pro-inflammatory M1-like macrophages with diminished ability to produce RvD1. Administering RvD1 reduced inflammation, cell death, and liver fibrosis. Mechanistically, RvD1 reduced inflammation by suppressing the Stat1-Cxcl10 signaling pathway in macrophages and prevented hepatocyte death by alleviating ER stress-mediated apoptosis. Moreover, RvD1 induced Mmp2 and decreased Acta2 expression in hepatic stellate cells (HSCs), and promoted Mmp9 and Mmp12 expression in macrophages, leading to fibrosis regression in MASH. Conclusions: RvD1 reduces Stat1-mediated inflammation, mitigates ER stress-induced apoptosis, and promotes MMP-mediated fibrosis regression in MASH. This study highlights the therapeutic potential of RvD1 to treat MASH.

2.
Theriogenology ; 215: 321-333, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128225

RESUMO

The transcription factor promyelocytic leukemia zinc finger (PLZF, also known as ZBTB16) is critical for the self-renewal of spermatogonial stem cells (SSCs). However, the function of PLZF in SSCs is not clear. Here, we found that PLZF acted as an epigenetic regulator of stem cell maintenance and self-renewal of germ cells. The PLZF protein interacts with the ten-eleven translocation 1 (TET1) protein and subsequently acts as a modulator to regulate the expression of self-renewal-related genes. Furthermore, Transcription Factor 7-like 2 (TCF7L2) is promoted by the coordination of PLZF and Tri-methylation of lysine 4 on histone H3 (H3K4me3). In addition, testicular single-cell sequencing indicated that TCF7L2 is commonly expressed in the PLZF cluster. We demonstrated that PLZF directly targets TCF7L2 and alters the landscape of histone methylation in the SSCs nucleus. Meanwhile, the RD domain and Zn finger domain of PLZF synergize with H3K4me3 and directly upregulate TCF7L2 expression at the transcriptional level. Additionally, we identified a new association between PLZF and the histone methyltransferase EZH2 at the genomic level. Our study identified a new association between PLZF and H3K4me3, established the novel PLZF&TET1-H3K4me3-TCF7L2 axis at the genomic level which regulates undifferentiated spermatogonia, and provided a platform for studying germ cell development in male domestic animals.


Assuntos
Fatores de Transcrição Kruppel-Like , Espermatogônias , Masculino , Animais , Espermatogônias/metabolismo , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Testículo/metabolismo , Fatores de Transcrição/metabolismo
3.
bioRxiv ; 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36865339

RESUMO

Testis-specific transcript 10 (Tex10) is a critical factor for pluripotent stem cell maintenance and preimplantation development. Here, we dissect its late developmental roles in primordial germ cell (PGC) specification and spermatogenesis using cellular and animal models. We discover that Tex10 binds the Wnt negative regulator genes, marked by H3K4me3, at the PGC-like cell (PGCLC) stage in restraining Wnt signaling. Depletion and overexpression of Tex10 hyperactivate and attenuate the Wnt signaling, resulting in compromised and enhanced PGCLC specification efficiency, respectively. Using the Tex10 conditional knockout mouse models combined with single-cell RNA sequencing, we further uncover critical roles of Tex10 in spermatogenesis with Tex10 loss causing reduced sperm number and motility associated with compromised round spermatid formation. Notably, defective spermatogenesis in Tex10 knockout mice correlates with aberrant Wnt signaling upregulation. Therefore, our study establishes Tex10 as a previously unappreciated player in PGC specification and male germline development by fine-tuning Wnt signaling.

4.
Stem Cells Int ; 2021: 6668658, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33603791

RESUMO

The future fertility of males with cancer may be irreversibly compromised by chemotherapy and/or radiotherapy. Spermatogonial stem cell transplantation is believed to be a way to restore fertility in men. However, the survival efficiency of transplanted cells is still low. Eukaryotic translation initiation factor 2 subunit 3 and structural gene Y-linked (Eif2s3y) located on the Y chromosome of male animals is a coding gene of eIF2γ which mainly functions in translation initiation. Recently, the emerging role of Eif2s3y in spermatogenesis has been emphasized in several studies. However, the underlying mechanism is still unclear. In addition, how Eif2s3y functions in large animals remains largely unknown. In this study, we obtained the CDS sequence of the Eif2s3y gene from the testis of dairy goats and found that this gene was highly expressed in the testis and was evolutionarily conserved among different species. Interestingly, overexpression of Eif2s3y promoted the proliferation of spermatogonial stem cells of dairy goats by activating the ERK signaling pathway. In animal experiments, overexpressing Eif2s3y promoted transplanted goat spermatogonial stem cells and produced more colonies after microinjection into the seminiferous tubules of infertile mice. In conclusion, our study highlights an undiscovered role of Eif2s3y in dairy goat reproduction. This finding may provide an important basis for future works regarding male spermatogenic cell restoration and represent a major advance toward surrogate sires becoming a tool for disseminating and regenerating germplasm in all mammals.

5.
Zool Res ; 42(1): 14-27, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33420764

RESUMO

Double sex and mab-3-related transcription factor 1 (Dmrt1), which is expressed in goat male germline stem cells (mGSCs) and Sertoli cells, is one of the most conserved transcription factors involved in sex determination. In this study, we highlighted the role of Dmrt1 in balancing the innate immune response in goat mGSCs. Dmrt1 recruited promyelocytic leukemia zinc finger (Plzf), also known as zinc finger and BTB domain-containing protein 16 (Zbtb16), to repress the Toll-like receptor 4 (TLR4)-dependent inflammatory signaling pathway and nuclear factor (NF)-κB. Knockdown of Dmrt1 in seminiferous tubules resulted in widespread degeneration of germ and somatic cells, while the expression of proinflammatory factors were significantly enhanced. We also demonstrated that Dmrt1 stimulated proliferation of mGSCs, but repressed apoptosis caused by the immune response. Thus, Dmrt1 is sufficient to reduce inflammation in the testes, thereby establishing the stability of spermatogenesis and the testicular microenvironment.


Assuntos
Células-Tronco Germinativas Adultas/metabolismo , Imunidade Inata/fisiologia , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Cabras , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , NF-kappa B , Túbulos Seminíferos , Células de Sertoli/metabolismo , Receptor 4 Toll-Like/genética , Fatores de Transcrição/genética
6.
J Cell Physiol ; 236(2): 1481-1493, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32692417

RESUMO

Spermatogenesis is a complex process that originates from and depends on the spermatogonial stem cells (SSCs). The number of SSCs is rare, which makes the separation and enrichment of SSCs difficult and inefficient. The transcription factor PAX7 maintains fertility in normal spermatogenesis in mice. However, for large animals, much less is known about the SSCs' self-renewal regulation, especially in dairy goats. We isolated and enriched the CD49f-positive and negative dairy goat testicular cells by magnetic-activated cell sorting strategies. The RNA- sequencing and experimental data revealed that cells with a high CD49f and PAX7 expression are undifferentiated spermatogonia in goat testis. Our findings indicated that ZBTB16 (PLZF), PAX7, LIN28A, BMPR1B, FGFR1, and FOXO1 were expressed higher in CD49f-positive cells as compared to negative cells and goat fibroblasts cells. The expression and distribution of PAX7 in dairy goat also have been detected, which gradually decreased in testis tissue along with the increasing age. When the PAX7 gene was overexpressed in dairy goat immortal mGSCs-I-SB germ cell lines, the expression of PLZF, GFRα1, ID4, and OCT4 was upregulated. Together, our data demonstrated that there is a subset of spermatogonial stem cells with a high expression of PAX7 among the CD49f+ spermatogonia, and PAX7 can maintain the self-renewal of CD49f-positive SSCs.


Assuntos
Integrina alfa6/genética , Fator de Transcrição PAX7/genética , Espermatogênese/genética , Testículo/crescimento & desenvolvimento , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Autorrenovação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Cabras/genética , Cabras/crescimento & desenvolvimento , Masculino , MicroRNAs/genética , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética , Espermatogônias/crescimento & desenvolvimento , Células-Tronco/citologia , Células-Tronco/metabolismo , Testículo/metabolismo
7.
Mol Cell Biochem ; 476(2): 1123-1134, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33200378

RESUMO

Double sex and mab-3 related transcription factor 1 (DMRT1) encodes a double sex/mab-3 (DM) domain, which is the most conserved structure that involved in sex determination both in vertebrates and invertebrates. This study revealed important roles of DMRT1 in maintaining self-renewal of male germline stem cells (mGSCs). Our results showed that insufficient expression of DMRT1 in mice testes resulted in decreased number of spermatogonial cells and collapse of testicular niche in vivo. Self-renewal and proliferation of mGSCs were inhibited. Based on the bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (co-IP) assay, it was finally revealed that the interaction between DMRT1 and promyelocytic leukemia zinc finger (PLZF) protein was essential for maintaining self-renewal of mGSCs. Moreover, BTB domain of PLZF, DM and DMRT1 domain of DMRT1 were indispensable in mGSC, which were responsible for preserving the quantity of germ cells. Our research provided a new scientific basis for studying the mechanism of self-renewal and spermatogenesis in goat mGSCs.


Assuntos
Autorrenovação Celular , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Domínios e Motivos de Interação entre Proteínas , Espermatogênese , Células-Tronco/citologia , Testículo/citologia , Fatores de Transcrição/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Cabras , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Modelos Animais , Células-Tronco/metabolismo , Testículo/metabolismo
8.
Cell Stem Cell ; 26(2): 234-250.e7, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32032525

RESUMO

Mouse embryonic stem cells (ESCs) sporadically express preimplantation two-cell-stage (2C) transcripts, including MERVL endogenous retrovirus and Zscan4 cluster genes. Such 2C-like cells (2CLCs) can contribute to both embryonic and extraembryonic tissues when reintroduced into early embryos, although the molecular mechanism underlying such an expanded 2CLC potency remains elusive. We examine global nucleosome occupancy and gene expression in 2CLCs and identified miR-344 as the noncoding molecule that positively controls 2CLC potency. We find that activation of endogenous MERVL or miR-344-2 alone is sufficient to induce 2CLCs with activation of 2C genes and an expanded potency. Mechanistically, miR-344 is activated by DUX and post-transcriptionally represses ZMYM2 and its partner LSD1, and ZMYM2 recruits LSD1/HDAC corepressor complex to MERVL LTR for transcriptional repression. Consistently, zygotic depletion of Zmym2 compromises the totipotency-to-pluripotency transition during early development. Our studies establish the previously unappreciated DUX-miR-344-Zmym2/Lsd1 axis that controls MERVL for expanded stem cell potency.


Assuntos
Retrovirus Endógenos , MicroRNAs , Animais , Retrovirus Endógenos/genética , Camundongos , MicroRNAs/genética , Células-Tronco Embrionárias Murinas , Zigoto
9.
J Cell Physiol ; 234(6): 8113-8121, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30317605

RESUMO

LIN28A serves as a crucial marker of dairy goat male germline stem cells (GmGSCs). In our previous study, we demonstrated that LIN28A promotes proliferation, self-renewal, and maintains the stemness of GmGSCs. Here, we found that LIN28A could activate the transcription of NANOG in a let-7g independent manner. We cloned the 5' upstream of two NANOG genes which were located on chromosome 15 ( NANOG-ch15) and chromosome 5 ( NANOG-ch5), respectively, and then examined their promoter activities and promoter methylation levels. Results showed that NANOG-ch15 is a pseudogene whereas NANOG-ch5 is active in Capra hircus. Bioinformatics analysis indicated that the 5' upstream region of NANOG-ch5 does not have typical CpG islands but contains several CG enrichment regions and several LIN28A binding sites. Deletion analysis suggested that NANOG-ch5 promoter can be activated by LIN28A directly binding to the site -210 but not by the indirect effect from the inhibition of let-7g, which is known to be downregulated by LIN28A. Mechanistically, LIN28A recruits and interacts with 5-methylcytosine-dioxygenase Ten-Eleven translocation 1 (TET1) to NANOG-ch5 gene promoter binding sites to orchestrate 5-methylcytosine and 5-hydroxymethylcytosine dynamics. These results revealed the role of LIN28A in NANOG transcriptional regulation via epigenetic DNA modifications to maintain the stemness of GmGSC.


Assuntos
Células Germinativas/metabolismo , Cabras/genética , Proteína Homeobox Nanog/genética , Proteínas de Ligação a RNA/genética , Animais , Diferenciação Celular/genética , Metilação de DNA/genética , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Células Germinativas/crescimento & desenvolvimento , Cabras/crescimento & desenvolvimento , Masculino , Células-Tronco/metabolismo , Ativação Transcricional/genética
10.
J Cell Physiol ; 233(3): 2537-2548, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28777437

RESUMO

The protein encoded by double sex and mab-3 related transcription factor 1 (Dmrt1) gene contains a double sex/mab-3 domain, which was considered as one of the most conservative structures in sex determination. However, its effect on spermatogenesis of dairy goat spermatogonial stem cells (SSCs) remains to be clarified. For the first time, the roles of Dmrt1 in spermatogenesis of livestock are highlighted. Here, we investigated the expression pattern of Dmrt1 in the testes of dairy goats. Dmrt1 primarily located in undifferentiated SSCs. Moreover, Dmrt1 enhanced differentiation and proliferation of mGSCs. On the contrary, the level of meiosis was down-regulated, as Dmrt1 determines whether SSCs undergo mitosis and spermatogonial differentiation or meiosis. In the busulfan-treated mice testes, Dmrt1 repair germ cell damage was emphasized as well. Our results exposed that Dmrt1 maintenance mGSCs in two ways: facilitating proliferation and self-renewal of SSCs; and reducing the inflammatory response caused by reproductive injury. These findings identify a central role for Dmrt1 in controlling population stability and injury restoring of SSCs.


Assuntos
Células-Tronco Germinativas Adultas/metabolismo , Diferenciação Celular , Proliferação de Células , Autorrenovação Celular , Indústria de Laticínios , Cabras/metabolismo , Espermatogênese , Fatores de Transcrição/metabolismo , Células-Tronco Germinativas Adultas/efeitos dos fármacos , Células-Tronco Germinativas Adultas/patologia , Animais , Bussulfano/toxicidade , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Cabras/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Masculino , Meiose , Mitose , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Transdução de Sinais , Espermatogênese/efeitos dos fármacos , Fatores de Transcrição/genética , Transfecção , Tretinoína/farmacologia
11.
J Cell Physiol ; 233(6): 4652-4665, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29171024

RESUMO

Promyelocytic leukemia zinc finger PLZF, known as ZBTB16 or ZFP145 is a critical zinc finger protein of male germline stem cells (mGSCs), it's an essential transcriptional factor for goat testis development and spermatogenesis. Loss of PLZF results in progressive depletion of SSCs after the first wave of spermatogenesis leading to eventual spermatogenic arrest, apparently the result of a shift in the balance in SSC fate away from self-renewal and toward differentiation. Cumulating evidences have demonstrated that microRNAs are expressed in a cell-specific or stage-specific manner during spermatogenesis and acts as regulators on specific makers such as Stra8, ETV5, and PLZF. However, the post transcriptional function of PLZF still poorly elucidate in mGSCs. Bioinformatic analysis and dual luciferase reporter assay showed that miR-19b-3p binds the 3'UTR of PLZF, suggesting that PLZF is a direct target of miR-19b-3p. The profile of miR-19b-3p and PLZF analyzed in dairy goat testis at different age showed that miR-19b-3p was significantly up-regulated in goat testis at 1, 3, 6 months and downregulated at 12, 18, and 24 months which was inversely correlated with PLZF in the same testis. Focusing on the role of miR-19b-3p, we found that miR-19b-3p changes c-KIT and mTOR signaling through PLZF to promote proliferation in goat nGSCs and infertile mice testes. Over-expression of PLZF significantly reversed miR-19b-3p-mediated proliferation in mice testes. We found also that miR-19b-3p reduced heterochromatin-mediated senescence through PLZF localized on HP1α. Taken together, our findings indicate that miR-19b-3p promotes proliferation and reduces heterochromatin-mediated senescence through PLZF in mGSCs.


Assuntos
Células-Tronco Germinativas Adultas/metabolismo , Proliferação de Células , Senescência Celular , Heterocromatina/metabolismo , MicroRNAs/metabolismo , Testículo/metabolismo , Regiões 3' não Traduzidas , Animais , Sítios de Ligação , Linhagem Celular , Cabras , Heterocromatina/genética , Masculino , Camundongos , MicroRNAs/genética , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Testículo/citologia
12.
Sci Rep ; 6: 38805, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27941834

RESUMO

Lin28a is a conserved RNA-binding protein that plays an important role in development, pluripotency, stemness maintenance, proliferation and self-renewal. Early studies showed that Lin28a serves as a marker of spermatogonial stem cells (SSCs) and promotes the proliferation capacity of mouse SSCs. However, there is little information about Lin28a in livestock SSCs. In this study, we cloned Capra hircus Lin28a CDS and found that it is evolutionarily conserved. Lin28a is widely expressed in different tissues of Capra hircus, but is expressed at a high level in the testis. Lin28a is specifically located in the cytoplasm of Capra hircus spermatogonial stem cells and may also be a marker of dairy goat spermatogonial stem cells. Lin28a promoted proliferation and maintained the self-renewal of GmGSCs-I-SB in vivo and in vitro. Lin28a-overexpressing GmGSCs-I-SB showed an enhanced proliferation rate, which might be due to increased PCNA expression. Moreover, Lin28a maintained the self-renewal of GmGSCs-I-SB by up-regulating the expression of OCT4, SOX2, GFRA1, PLZF and ETV5. Furthermore, we found that Lin28a may activate the AKT, ERK, and mTOR signaling pathways to promote the proliferation and maintain the self-renewal of GmGSCs-I-SB.


Assuntos
Regulação da Expressão Gênica/fisiologia , Cabras/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação a RNA/fisiologia , Transdução de Sinais/fisiologia , Espermatogônias/metabolismo , Células-Tronco/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Sequência de Aminoácidos , Animais , Proliferação de Células , Autorrenovação Celular/fisiologia , Clonagem Molecular , Sequência Conservada , Citoplasma/metabolismo , Evolução Molecular , Regulação da Expressão Gênica/genética , Cabras/genética , Interações Hidrofóbicas e Hidrofílicas , Masculino , Especificidade de Órgãos , Filogenia , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Ruminantes/genética , Alinhamento de Sequência , Transdução de Sinais/genética , Espermatogônias/citologia , Células-Tronco/citologia , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
13.
Sci Rep ; 6: 37414, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27857213

RESUMO

Epigenetic modification plays key roles in spermatogenesis, especially DNA methylation dynamic is important in sustaining normal spermatogenesis. Ten-eleven translocation 1 (Tet1) is not only a key demethylase, which works in specific gene regions, but also crosstalks with partners to regulate epigenetic progress as protein complexes. Dairy goat is an important livestock in China, while the unstable culture system in vitro inhibits optimization of new dairy goat species. The study of epigenetic modification in male germline stem cells (mGSCs) is beneficial to the optimization of adult stem cell culture system in vitro, and the improvement of sperm quality and breeding of selected livestock. In our study, we not only analyzed the morphology, gene expression, DNA methylation and histone methylation dynamic in mouse Tet1 (mTet1) modified mGSCs, we also analyzed the stemness ability by in vivo transplantation and explored the functional mechanism of Tet1 in dairy goat mGSCs. The results showed mTet1 modified mGSCs had better self-renewal and proliferation ability than wild-type mGSCs, mTet1 could also up-regulate JMJD3 to decrease H3K27me3, which also showed to suppress the MEK-ERK pathway. Furthermore, Co-IP analysis demonstrated that TET1 interact with PCNA and HDAC1 by forming protein complexes to comprehensively regulate dairy goat mGSCs and spermatogenesis.


Assuntos
Proliferação de Células/genética , Autorrenovação Celular/genética , Proteínas de Ligação a DNA/genética , Histona Desacetilase 1/genética , Antígeno Nuclear de Célula em Proliferação/genética , Proteínas Proto-Oncogênicas/genética , Animais , Diferenciação Celular/genética , Metilação de DNA/genética , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/crescimento & desenvolvimento , Cabras/genética , Histona Desmetilases com o Domínio Jumonji/genética , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Espermatogênese/genética , Células-Tronco/metabolismo
14.
Reproduction ; 149(5): 445-52, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25820901

RESUMO

Spermatogonia stem cells (SSCs), also named the male germline stem cells (mGSCs), which is located at the base of the seminiferous tubules of testis, is the basis for generating sperm steadily in male animals. Currently, there are some preliminary study on the self-renewal and differentiation of SSCs, but further mechanism, especially in large animals, has not been clearly understood. Ras/ERK1/2 pathway is widely distributed in multiple cells in vivo. It plays an important role in cell proliferation, differentiation and so on. However, the study on the function for the self-renewal of dairy goats SSCs has not been investigated. In this study, the dairy goat SSCs characterization were evaluated by semi-RT-PCR, alkaline phosphatase (AP) staining, and immunofluorescence staining. Then, Ras/ERK1/2 pathway was blocked by specific MEK1/2 inhibitor PD0325901. We analyzed the proliferation by cell number, cell growth curve, Brdu incorporation assay, and cell cycle analysis. The results showed that the proliferation was significantly inhibited by PD0325901. Cell apoptosis induced by blocking the Ras/ERK1/2 pathway was analyzed by TUNEL. The expression of ETV5 and BCL6B, the downstream gene of Ras/ERK1/2 pathway, was downregulated. This study suggest that the Ras/ERK1/2 pathway plays a critical role in maintaining the self-renewal of dairy goat SSCs via regulation of ETV5 and BCL6B. This study laid a foundation for insights into the mechanism of SSCs self-renewal comprehensively.


Assuntos
Proliferação de Células , Sistema de Sinalização das MAP Quinases/fisiologia , Espermatogônias/citologia , Células-Tronco/citologia , Testículo/citologia , Proteínas ras/metabolismo , Animais , Apoptose , Western Blotting , Ciclo Celular , Diferenciação Celular , Células Cultivadas , Imunofluorescência , Cabras , Técnicas Imunoenzimáticas , Masculino , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espermatogônias/metabolismo , Células-Tronco/metabolismo , Testículo/metabolismo , Proteínas ras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...