Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2403732, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963164

RESUMO

The construction of novel structured Prussian blue analogs (PBAs) by chemical etching has attracted the most attention to PBA derivatives with outstanding performance. In this work, the unprecedented PBA orthogonal frustums are first prepared from nanocubes through a selective chemical etching approach using trisodium citrate as an etchant. The citrate ions can chelate with nickel species from the edges/corners of NiCo-PBA nanocubes and then disintegrate NiCo-PBAs resulting in the generation of NiCo-PBA orthogonal frustums. The derived CoNi2S4/Co0.91S composites still inherit the original orthogonal frustum structure and possess outstanding supercapacitor performance. This study develops a popularized method to construct novel structured PBAs and brings inspiration for designing PBA-based electrodes with advanced electrochemical performance.

2.
J Colloid Interface Sci ; 661: 614-628, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38310770

RESUMO

Construction of Prussian blue analogues (PBAs) with heterostructure is beneficial to preparing PBAs derivatives with superior electrochemical performance. In this work, the core-shell nanostructured nanocubes composed of nickel hexacyanocobalt PBA (NiCo-PBA)@cobalt carbonate hydroxide (CCH) are synthesized through an in-situ epitaxial growth strategy, and the formation mechanisms of coating are carefully validated and specifically discussed. Then, the precursors are successfully transformed into hierarchical CoNi2S4/Co9S8@Co4S3 via the gas-phase vulcanization method. Benefiting from the intriguing heterostructure and multicomponent sulfides, the CoNi2S4/Co9S8@Co4S3-80 electrode exhibits a high specific capacity of 799 ± 16C/g (specific capacitance of 1595 ± 31F/g) at 1 A/g, ultra-high capacity retention of 80 % at a high current density of 20 A/g. The assembled asymmetric supercapacitor (ASC) device delivers a high energy density of 43.3 Wh kg-1 at a power density of 899 W kg-1 and exhibits superior cycling stability with the capacity retention of 88 % after 5,000 cycles. Subsequently, the fabricated all-solid-state ASC device shows an excellent energy density of 36.4 Wh kg-1 with a power density of 824 W kg-1. This work proposing rational design of combining multicomponent sulfides and core-shell heterostructure based on PBA nanocubes opens up a novel route for developing asymmetric supercapacitor electrode materials with superior performance.

3.
Chemosphere ; 352: 141405, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331265

RESUMO

This study demonstrated the design and fabrication of flower-like Ni/Mn-MOFs materials, and three-dimensional ultrathin flower-like Ni/Mn/MC microspheres were fabricated by embedding metal or metal oxide nanoparticles into a porous carbon skeleton via high-temperature pyrolysis at 600 °C and used for the electrocatalytic degradation of ceftriaxone sodium. This unique ultrathin porous flower-like structure can expose more active sites, provide rapid ion/electron transfer, and improve electrocatalytic activity. Meanwhile, the excellent electrical conductivity of the carbon skeleton, as well as the rational composition and synergistic effect of the two components, can promote the generation of active radicals (•OH and •O2-) in the reaction system, which accelerates the electrochemical degradation process and improves the electrocatalytic degradation performance. The results showed that the Ni/Mn/MC-5:1 composite prepared when the molar ratio of Ni: Mn was 5:1 exhibited the best electrocatalytic degradation performance for the degradation of sodium ceftriaxone. The composites showed 98.2% degradation of ceftriaxone sodium in 120 min and maintained sound degradation after 20 cycles. Therefore, we concluded that this novel multicomponent composite has good electrocatalytic activity and stability for the degradation of antibiotic wastewater.


Assuntos
Nanopartículas Metálicas , Estruturas Metalorgânicas , Ceftriaxona , Microesferas , Carbono , Óxidos
4.
Dalton Trans ; 52(9): 2887-2897, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36779249

RESUMO

Molybdenum (Mo) is one of the most important constituent elements in natural nitrogenase and theoretical calculation results show that Mo-based materials can be used as potential NRR electrocatalysts. The design of advanced catalysts with a special structure is very essential for promoting the development of electrocatalytic N2 into NH3. In this paper, Fe-doped MoO2/C heterostructured nanoparticles with rich oxygen vacancies (Vo) are designed and they exhibit highly efficient catalytic activity for artificial N2 fixation in neutral electrolytes under ambient conditions. The influence of the atomic ratio of the Fe source to the Mo source and the NaBH4 ethanol solution treatment on the structure and electrocatalytic performance are systematically investigated. The Vo-Fe-MoO2/C (1 : 50) catalyst with rich oxygen vacancies shows a satisfactory electrocatalytic N2 reduction reaction (e-NRR) activity in 0.1 M Na2SO4 with a high ammonia yield rate of 15.87 ± 0.3 µg h-1 mg-1 at -0.5 V versus the reversible hydrogen electrode (vs. the RHE) and a FE of 13.4% at -0.3 V (vs. the RHE). According to the results of DFT calculations, the active center of the electro-catalytic nitrogen reduction reaction is the molybdenum atom between the iron atom and the O vacancy. Oxygen vacancies can not only reduce the energy barrier of the RDS but also facilitate the desorption of ammonia and the first step hydrogenation of nitrogen. The doping of Fe will change the electronic state of the Mo atom in MoO2.

5.
J Colloid Interface Sci ; 602: 721-731, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34153711

RESUMO

Three-dimension (3D) porous carbon-sheet microspheres (PCSMs) are prepared through coating coal tar pitch on basic zinc carbonate microspheres followed by in situ ZnO template carbonization and KOH activation. The as-prepared PCSMs show microsphere morphology composed of petal-like carbon nanosheets, which have large specific area (1359.88-2059.43 m2 g-1) and multiscale pores (mainly micropores and mesopores). As the supercapacitor electrodes, the 3D PCSMs present a good electrochemical performance with a large specific capacitance of 313 F g-1 at 1 A g-1 and high rate capability of 81.9% capacitance retention when increasing the current density up to 50 A g-1 in a three-electrode system. In addition, the energy density can reach up to 18.79 Wh kg-1 at a high power density of 878.4 W kg-1 for PCSMs-0.2a symmetrical supercapcitor in 1 M Na2SO4 electrolyte.

6.
Inorg Chem ; 60(6): 4116-4123, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33663213

RESUMO

Recently, Mo-based metal catalysts are widely applied in the electrocatalytic nitrogen reduction reaction (NRR) due to the lower binding energy between the Mo atom and N atom. The design of a Mo-based catalyst@carbon heterostructure and the introduction of anion vacancies are effective measures to improve their NRR performance. In this research, the cross-linked Vo-MoO2@C (Vo means oxygen vacancies) heterostructure nanoparticles with rich oxygen vacancies are first synthesized via pectin assisted hydrothermal reaction followed by calcination and treating with NaBH4 solution. Vo-MoO2@C exhibits good electrocatalytic NRR performance with an ammonia yield rate of 9.75 µg h-1 mg-1 at -0.5 V (RHE) and a Faraday efficiency (FE) of 3.24% at -0.3 V (RHE) under ambient conditions.

7.
J Colloid Interface Sci ; 535: 276-286, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30316114

RESUMO

Here, a series of porous carbon based supercapacitor electrode materials have been synthesized by means of pyrolysis and hydrothermal methods combining with KOH activation using the biomass wastes mung bean husks as resources. The influence of synthesis process on the morphology, structure and supercapacitor performance of mung bean husks derived porous carbons has been investigated systematically. Especially, it is found that these oxygen-containing groups on the biochar play a crucial role in fabricating the three-dimensional (3D) hierarchical porous structure carbon. The original bio-structured porous carbon (PC3-600), the 3D architecture porous carbon (HPC2-700) and the porous carbon block (HPPC2-700) have a high specific surface area, and the former mainly contains micropores and the latter two possess multistage pores. The specific capacitance of PC3-600, HPC2-700 and HPPC2-700 is respectively up to 390 F g-1, 353 F g-1, 304 F g-1 at 1 A g-1, and still maintains as high as 287 F g-1, 270 F g-1 and 235 F g-1 with corresponding retention ratio of 73.5%, 76.48%, 77.3% even at a high current density of 50 A g-1. HPC2-700//HPC2-700 symmetric supercapacitor achieves a high energy density of 20.4 Wh kg-1 at 872 W kg-1 in 1 M Na2SO4 electrolyte.


Assuntos
Carbono/química , Vigna/química , Resíduos , Biomassa , Capacitância Elétrica , Eletrodos , Tamanho da Partícula , Porosidade , Propriedades de Superfície
8.
Chem Commun (Camb) ; 52(40): 6673-6, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27115341

RESUMO

A smart and sustainable strategy based on charge-induced self-assembly and nanocrystal-assisted catalytic graphitization is explored for the efficient construction of 3D nanostructure hierarchical porous graphitic carbons from the pectin biopolymer. The electrostatic interaction between the negatively charged pectin chains and magnesium ions plays a crucial role in the formation of 3D architectures. The 3D HPGCs possess a three-dimensional carbon framework with a hierarchical porous structure, flake-like graphitic carbon walls and high surface area (1320 m(2) g(-1)). The 3D HPGCs show an outstanding specific capacitance of 274 F g(-1) and excellent rate capability with a high capacitance retention of 85% at a high current density of 50 A g(-1) for supercapacitor electrodes. This strategy provided a novel approach to effectively construct 3D porous carbon nanostructures from biopolymers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...