Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 96(6): e0217521, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107381

RESUMO

REC8 meiotic recombination protein (REC8) is a member of structural maintenance of chromosome (SMC) protein partners, which play an important role in meiosis, antitumor activity, and sperm formation. As the adaptor proteins of RIG-I-like receptor (RLR) signaling and cyclic GMP-AMP synthase (cGAS)-DNA signaling, the activity and stability of MAVS (mitochondrial antiviral signaling protein; also known as VISA, Cardif, and IPS-1) and STING (stimulator of interferon genes; also known as MITA) are critical for innate immunity. Here, we report that REC8 interacts with MAVS and STING and inhibits their ubiquitination and subsequent degradation, thereby promoting innate antiviral signaling. REC8 is upregulated through the JAK-STAT signaling pathway during viral infection. Knockdown of REC8 impairs the innate immune responses against vesicular stomatitis virus (VSV), Newcastle disease virus (NDV), and herpes simplex virus (HSV). Mechanistically, during infection with viruses, the SUMOylated REC8 is transferred from the nucleus to the cytoplasm and then interacts with MAVS and STING to inhibit their K48-linked ubiquitination triggered by RNF5. Moreover, REC8 promotes the recruitment of TBK1 to MAVS and STING. Thus, REC8 functions as a positive modulator of innate immunity. Our work highlights a previously undocumented role of meiosis-associated protein REC8 in regulating innate immunity. IMPORTANCE The innate immune response is crucial for the host to resist the invasion of viruses and other pathogens. STING and MAVS play a critical role in the innate immune response to DNA and RNA viral infection, respectively. In this study, REC8 promoted the innate immune response by targeting STING and MAVS. Notably, REC8 interacts with MAVS and STING in the cytoplasm and inhibits K48-linked ubiquitination of MAVS and STING triggered by RNF5, stabilizing MAVS and STING protein to promote innate immunity and gradually inhibiting viral infection. Our study provides a new insight for the study of antiviral innate immunity.


Assuntos
Proteínas de Ciclo Celular , Imunidade Inata , Viroses , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antivirais , Proteínas de Ciclo Celular/imunologia , Proteínas de Membrana/metabolismo , Vírus da Doença de Newcastle , Simplexvirus , Ubiquitinação , Vírus da Estomatite Vesicular Indiana , Viroses/imunologia
2.
Diabetes Res Clin Pract ; 183: 109171, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34883184

RESUMO

AIMS: To evaluate glycemic variations, changes in insulin resistance and oxidative stress after chiglitazar or sitagliptin treatment in untreated patients with type 2 diabetes mellitus (T2DM). METHODS: Based on the study inclusion and exclusion criteria, 81 patients with T2DM were randomly divided to receive chiglitazar or sitagliptin treatment for 24 weeks. Continuous glucose monitoring (CGM) systems were conducted for 72 h in eligible patients. We analyzed the following glycemic variation parameters derived from the CGM data and measured the serum levels of hemoglobin A1c (HbA1c), fasting blood glucose (FBG), 2-h postprandial blood glucose (2-h PBG), fasting insulin (Fins) and inflammatory-related indicators at baseline and the end of the study. RESULTS: After treatment for 24 weeks, our data showed a similar reduction in HbA1c between chiglitazar and sitagliptin. The 24-h mean blood glucose (MBG), standard deviation (SD) and mean amplitude of glycemic excursion (MAGE) were significantly decreased, and the time in range (TIR) was increased after chiglitazar and sitagliptin therapy. Chiglitazar administration led to significant improvement in insulin resistance/insulin secretion (HOMA-IR, HOMA-IS), interleukin-6 (IL-6), prostaglandin F2α (PGF-2α), 17-hydroxyprogesterone (17-OHP) and adiponectin (ADP) score values compared with sitagliptin administration. CONCLUSIONS: Chiglitazar therapy effectively reduced glucose variation and showed a larger improvement in insulin resistance and inflammatory parameters than sitagliptin.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Biomarcadores , Glicemia , Automonitorização da Glicemia , Carbazóis , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose , Hemoglobinas Glicadas , Humanos , Hipoglicemiantes/uso terapêutico , Propionatos , Fosfato de Sitagliptina/uso terapêutico
3.
Cell Mol Immunol ; 17(11): 1163-1179, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32963356

RESUMO

The ability to harness innate immunity is a promising solution for improving cancer immunotherapy. Interferon (IFN) induces expression of IFN-stimulated genes (ISGs) by activating the JAK-STAT signaling pathway to promote innate immunity and inhibit malignant tumor growth, but the functions and mechanisms of most ISGs in cancer regulation are unknown. As an innate immune effector, ISG12a promotes the innate immune response to viral infection. In this study, ISG12a was found to be expressed at low levels in gastrointestinal cancer, represented by hepatocellular cancer (HCC) and gastric cancer (GC), and it identified as a tumor suppressor that affects clinical prognosis. ISG12a silencing accelerated the malignant transformation and epithelial-mesenchymal transition of cancer cells. Mechanistically, ISG12a promoted ß-catenin proteasomal degradation by inhibiting the degradation of ubiquitinated Axin, thereby suppressing the canonical Wnt/ß-catenin signaling pathway. Notably, ß-catenin was identified as a transcription factor for PD-L1. Inhibition of Wnt/ß-catenin signaling by ISG12a suppressed expression of the immune checkpoint PD-L1, rendering cancer cells sensitive to NK cell-mediated killing. This study reveals a mechanism underlying the anticancer effects of IFN. Some ISGs, as represented by ISG12a, may be useful in cancer therapy and prevention. The identified interrelations among innate immunity, Wnt/ß-catenin signaling, and cancer immunity may provide new insight into strategies that will improve the efficiency of immunotherapy.


Assuntos
Imunidade Inata , Proteínas de Membrana/metabolismo , Neoplasias/imunologia , Via de Sinalização Wnt , Animais , Proteína Axina/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linhagem Celular , Humanos , Proteínas de Checkpoint Imunológico/metabolismo , Células Matadoras Naturais/imunologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Neoplasias/patologia , Fenótipo , Prognóstico , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteínas Quinases Associadas a Fase S/metabolismo , Transcrição Gênica , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...