Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(22): 62410-62421, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36941523

RESUMO

Water pollution by antibiotics is a serious and growing problem. Given this challenge, a free-standing three-dimensional (3D) reduced graphene oxide foam supported copper oxide nanoparticles (3D-rGO-CuxO) was synthesized using GO as a precursor and applied as an efficient persulfate activator for tetracycline (TC) degradation. The influences of CuxO mass, solution pH, persulfate dosage, and common anions on the TC degradation were investigated in detail. Analytical techniques indicated that the 3D-rGO-CuxO showed a cross-linking three-dimensional network structure, and CuxO particles with irregular shapes were uniformly loaded on graphene pore walls. The XPS and Auger spectra of Cu confirmed that Cu2O was the main component in solid copper compounds. The addition of CuxO was vitally important for the activation of the oxidation system, and the removal rate reached 98% with a CuxO load of 7:1. The pH showed little influence on the activation effect on TC degradation. For common anions, Cl- and CO32- had little influence on the system, while humic acid had a great inhibitory effect. The EPR test and quenching experiment revealed that the active substances in the oxidative degradation process mainly include SO4-·, ·OH, 1O2, and reactive Cu(III). Additionally, the 3D-rGO-CuxO material proved highly stable according to the replicated test results and was promising for the remediation of antibiotic-contaminated water.


Assuntos
Grafite , Poluentes Químicos da Água , Grafite/química , Cobre/química , Tetraciclina/química , Antibacterianos , Poluentes Químicos da Água/análise
3.
Environ Sci Pollut Res Int ; 27(10): 10846-10856, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31942722

RESUMO

Antibiotic-heavy metal multi-pollutants are produced by intensive livestock farming and become an increasingly prominent problem. In this study, the transport behavior of tetracycline (TC) and its chelate with copper ions (Cu-TC) in saturated sand column with and without graphene oxide (GO) prefilled was investigated by laboratory breakthrough experiments. The effects of pH, ionic strength, and the cotransport with GO were studied detailedly. The results showed that the prepared nano-GO had a single- or multilayered sheet structure with a diameter of several µm. The surface of GO contained abundant oxygen-containing functional groups, which imparted it strong hydrophilicity and electronegativity. Pollutant transport experiments showed that decrease of H+ weakened the transport ability of TC and Cu-TC. Both Na+ and Ca2+ promoted the transport of TC, with Ca2+ having a much greater effect. The presence of Na+ inhibited the transport of Cu-TC, while Ca2+ promoted Cu-TC transport. The addition of Cu2+ was more favorable for the transport of Cu-TC than TC alone. In the GO-prefilled column, the effluent concentrations of TC and Cu-TC greatly decreased due to adsorption onto GO surfaces. The transport of Cu-TC was more related to GO concentration than TC alone due to the high affinity between GO and Cu-TC. Moreover, the transport behavior of GO in the sand column was consistent with that of the corresponding TC or Cu-TC, indicating that GO could cotransport with TC and Cu-TC multi-pollutants. Our study showed that the GO would interact with TC and Cu-TC and thus have significant influences on the fate and transport of these pollutions in porous media.


Assuntos
Poluentes Ambientais , Grafite , Adsorção , Antibacterianos , Porosidade
4.
RSC Adv ; 10(9): 5066-5076, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35498284

RESUMO

Organic pollutants in water are an increasingly prominent problem. Given this challenge, this study investigated the high adsorption capacity of reed-based biochar for use as an adsorbent using the potassium hydroxide (KOH) activation method. We investigated the performance and mechanism of reed-based biochar with respect to the adsorption of a significant contaminant of emerging concern, tetracycline (TC). The effects of pH, contact time, temperature, and initial pollution concentration on the adsorption rate were investigated in detail. The experimental results suggest that the internal structure of activated biochar was loose and porous, and the specific surface area (BET) increased by 194.08 times, reaching 965.31 m2 g-1 after KOH activation. The biochar surface was electronegative, due to the ionization of oxygen-containing functional groups, such as hydroxyl (-OH) and carboxyl (-COOH) groups. Solution pH had only a weak influence on TC adsorption; neutral conditions favored adsorption. The adsorption kinetics and isotherms were represented well by the pseudo-second-order and Freundlich models, respectively. The chemical multilayer adsorption may play an important role in TC adsorption, which was a spontaneous endothermic reaction. The adsorption process occurred more easily after KOH activation and the adsorption capacity of biochar improved by more than 20 times. These results indicate that preparing reed-derived biochar using KOH activation is an effective way to reduce pollution and utilize a waste resource.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...