Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38612749

RESUMO

A large amount of primary energy is lost due to friction, and the study of new additive materials to improve friction performance is in line with the concept of low carbon. Carbon nanotubes (CNTs) have advantages in drag reduction and wear resistance with their hollow structure and self-lubricating properties. This review investigated the mechanism of improving friction properties of blocky composites (including polymer, metal, and ceramic-based composites) with CNTs' incorporation. The characteristic tubular structure and the carbon film make low wear rate and friction coefficient on the surface. In addition, the effect of CNTs' aggregation and interfacial bond strength on the wear resistance was analyzed. Within an appropriate concentration range of CNTs, the blocky composites exhibit better wear resistance properties. Based on the differences in drag reduction and wear resistance in different materials and preparation methods, further research directions of CNTs have been suggested.


Assuntos
Nanotubos de Carbono , Cerâmica , Fricção , Polímeros , Software
2.
Appl Bionics Biomech ; 2022: 4442417, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35506045

RESUMO

In order to improve the antiwear characteristics of the double-vane self-priming pump, the surface structure of the Scapharca subcrenata was extracted and reconstructed according to bionic principles. Three types of nonsmooth surface models were established at the outlet end of the suction surface of the vanes, which is the most severely worn in the double-vane pump. The external characteristics, pressure field distribution, wear area distribution, and wear degree of the volute and vanes at different concentrations of nonsmooth vane structure were investigated by numerical simulation to reveal the mechanism of the nonsmooth surface structure of the wear characteristics of the vanes. The results show that the head and efficiency of pumps with four different vanes decrease and the average wear rate increases as the particle concentration increases. The different vane structures have a very small effect on the wear resistance of the volute, but a larger effect on vane wear. The circular nonsmooth surface structure, which reduces the low pressure area of the inlet section of the impeller while ensuring a smaller drop in head and efficiency, produces the best antiwear effect and improves the antiwear performance of the double-vane pump.

3.
Int J Mol Sci ; 23(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35408883

RESUMO

As a new type of flexible smart material, ionic polymer-metal composite (IPMC) has the advantages of being lightweight and having fast responses, good flexibility, and large deformation ranges. However, IPMC has the disadvantages of a small driving force and short lifespan. Based on this, this paper firstly analyzes the driving mechanism of IPMC. Then, it focuses on the current preparation technology of IPMC from the aspects of electroless plating and mechanical plating. The advantages and disadvantages of various preparation methods are analyzed. Due to the special driving mechanism of IPMC, there is a problem of short non-aqueous working time. Therefore, the modification research of IPMC is reviewed from the aspects of the basement membrane, working medium, and electrode materials. Finally, the current challenges and future development prospects of IPMC are discussed.


Assuntos
Metais , Polímeros , Eletrodos , Íons , Tecnologia
4.
Appl Bionics Biomech ; 2022: 4485365, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321354

RESUMO

With the development of science and technology, energy consumption and demand continue to increase, and energy conservation and consumption reduction have become the primary issue facing the world. Improving the energy efficiency of ships not only helps reduce fuel consumption but also reduces carbon dioxide emissions, which is an important guarantee for the green development of the ocean and the maintenance of ecological balance. Through natural selection and adaptation to the environment after evolution, the body surface of organisms generates a variety of ways to resist adhesion and resistance of Marine organisms. Through the study of fish organisms, it is found that the body surface of general fish has mucus, which can effectively reduce the friction resistance of the body surface of fish subjected to seawater. In addition, the grooves on the body surface also help to reduce the resistance between swimming organisms and fluids. Based on the principle of bionics, the drag reduction characteristics and mechanism of fish surface mucus were analyzed. The drag reduction mechanism of bionic nonsmooth surface is analyzed from the aspect of body surface structure. On the basis of the two approaches, the characteristics and mechanism of slime and groove codrag reduction on the surface of Marine organisms were discussed in depth, so as to obtain a better new drag reduction method and provide reference for subsequent related research.

5.
PLoS One ; 10(6): e0128824, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26057126

RESUMO

Phytoremediation is a promising means of ameliorating heavy metal pollution through the use of transgenic plants as artificial hyperaccumulators. A novel Streptococcus thermophilus γ-glutamylcysteine synthetase-glutathione synthetase (StGCS-GS) that synthesizes glutathione (GSH) with limited feedback inhibition was overexpressed in sugar beet (Beta vulgaris L.), yielding three transgenic lines (s2, s4 and s5) with enhanced tolerance to different concentrations of cadmium, zinc and copper, as indicated by their increased biomass, root length and relative growth compared with wild-type plants. Transgenic sugar beets accumulated more Cd, Zn and Cu ions in shoots than wild-type, as well as higher GSH and phytochelatin (PC) levels under different heavy metal stresses. This enhanced heavy metal tolerance and increased accumulation were likely due to the increased expression of StGCS-GS and consequent overproduction of both GSH and PC. Furthermore, when multiple heavy metal ions were present at the same time, transgenic sugar beets overexpressing StGCS-GS resisted two or three of the metal combinations (50 µM Cd-Zn, Cd-Cu, Zn-Cu and Cd-Zn-Cu), with greater absorption in shoots. Additionally, there was no obvious competition between metals. Overall, the results demonstrate the explicit role of StGCS-GS in enhancing Cd, Zn and Cu tolerance and accumulation in transgenic sugar beet, which may represent a highly promising new tool for phytoremediation.


Assuntos
Proteínas de Bactérias/metabolismo , Beta vulgaris/genética , Resistência a Medicamentos , Metais Pesados/toxicidade , Plantas Geneticamente Modificadas/genética , Proteínas de Bactérias/genética , Beta vulgaris/efeitos dos fármacos , Beta vulgaris/metabolismo , Biotransformação , Metais Pesados/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/metabolismo , Streptococcus thermophilus/genética , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...