Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cortex ; 178: 18-31, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38964150

RESUMO

Research has established the influence of short-term physical practice for enhancing action prediction in right-handed (RH) individuals. In addition to benefits of physical practice for these later assessed perceptual-cognitive skills, effector-specific interference has been shown through action-incongruent secondary tasks (motor interference tasks). Here we investigated this experience-driven facilitation of action predictions and effector-specific interference in left-handed (LH) novices, before and after practicing a dart throwing task. Participants watched either RH (n = 19) or LH (n = 24) videos of temporally occluded dart throws, across a control condition and three secondary-task conditions: tone-monitoring, RH or LH force monitoring. These conditions were completed before and after physical practice throwing with the LH. Significantly greater improvement in prediction accuracy was shown post-practice for the LH- versus RH-video group. Consistent with previous work, effector-specific interference was shown, exclusive to the LH-video group. Only when doing the LH force monitoring task did the LH-video group show secondary task interference in prediction accuracy. These data support the idea that short-term physical practice resulted in the development of an effector-specific motor representation. The results are also consistent with other work in RH individuals (showing RH motor interference) and hence rule out the interpretation that these effector specific effects are due to the disruption of more generalized motor processes, thought to be lateralized to the left-hemisphere of the brain.

2.
J Nanobiotechnology ; 22(1): 391, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965509

RESUMO

BACKGROUND: Prostate cancer (PCa) has a high incidence in men worldwide, and almost all PCa patients progress to the androgen-independent stage which lacks effective treatment measures. PTENP1, a long non-coding RNA, has been shown to suppress tumor growth through the rescuing of PTEN expression via a competitive endogenous RNA (ceRNA) mechanism. However, PTENP1 was limited to be applied in the treatment of PCa for the reason of rapid enzymatic degradation, poor intracellular uptake, and excessively long base sequence to be synthesized. Considering the unique advantages of artificial nanomaterials in drug loading and transport, black phosphorus (BP) nanosheet was employed as a gene-drug carrier in this study. RESULTS: The sequence of PTENP1 was adopted as a template which was randomly divided into four segments with a length of about 1000 nucleotide bases to synthesize four different RNA fragments as gene drugs, and loaded onto polyethyleneimine (PEI)-modified BP nanosheets to construct BP-PEI@RNA delivery platforms. The RNAs could be effectively delivered into PC3 cells by BP-PEI nanosheets and elevating PTEN expression by competitive binding microRNAs (miRNAs) which target PTEN mRNA, ultimately exerting anti-tumor effects. CONCLUSIONS: Therefore, this study demonstrated that BP-PEI@RNAs is a promising gene therapeutic platform for PCa treatment.


Assuntos
Nanoestruturas , PTEN Fosfo-Hidrolase , Fósforo , Neoplasias da Próstata , Masculino , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , Fósforo/química , Nanoestruturas/química , MicroRNAs/genética , Linhagem Celular Tumoral , Células PC-3 , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Polietilenoimina/química , Animais , Técnicas de Transferência de Genes , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , RNA Endógeno Competitivo
3.
Sci Total Environ ; 934: 173202, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754517

RESUMO

Net ecosystem exchange (NEE) of carbon dioxide (CO2) in disturbed tidal wetlands remain less investigated, albeit the importance of these 'blue carbon' ecosystems in mitigating climate change has been increasingly recognized. The invasion of smooth cordgrass into China's unvegetated tidal wetlands promotes the carbon sink, however little is known about the changes in NEE when the cordgrass is intensively removed. Here, two-year continuous eddy covariance measurements from Nov. 2021 to Oct. 2023 were used to examine how intensive cordgrass removal affects NEE in a cordgrass-dominated saltmarsh-mangrove ecotone of Southeast China. The results showed (a) this wetland acted as a monthly CO2 sink throughout the pre-removal year with nearly 90 % of the annual sink (-719.7 g C m-2 yr-1) in the cordgrass growing season from Apr. to Oct.; (b) the cordgrass removal turned this high-sink wetland into a weak CO2 source at an annual scale (39.0 g C m-2 yr-1), while the change of the sink was diurnally and seasonally unequal with daytime and growing season, respectively, accounting for the majority of the reduction; (c) tidal inundation exerted inhibitive effects on the response of daytime and nighttime NEE to photosynthetically active radiation and air temperature, respectively, with the changes in all-day NEE more driven by photosynthesis than ecosystem respiration. As one of the first assessments on the impacts of cordgrass removal on NEE, this study confirms the reduction in annual CO2 sink is predominantly attributed to the cordgrass removal instead of the climatic difference. This study highlights the importance of the interactive effects among phenological, meteorological, and tidal factors in regulating the seasonality of NEE and its changes along with cordgrass removal. Future longer flux measurements with extended years are needed to complement the present assessment of the cordgrass removal-induced impacts on NEE from a long-term perspective.

4.
Genes (Basel) ; 14(12)2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38137021

RESUMO

The Pingliang red cattle, an outstanding indigenous resource in China, possesses an exceptional breeding value attributed to its tender meat and superior marbling quality. Currently, research efforts have predominantly concentrated on exploring its maternal origin and conducting conventional phenotypic studies. However, there remains a lack of comprehensive understanding regarding its genetic basis. To address this gap, we conducted a thorough whole-genome analysis to investigate the population structure, phylogenetic relationships, and gene flows of this breed using genomic SNP chip data from 17 bovine breeds. The results demonstrate that Pingliang red cattle have evolved distinct genetic characteristics unique to this breed, clearly distinguishing it from other breeds. Based on the analysis of the population structure and phylogenetic tree, it can be classified as a hybrid lineage between Bos taurus and Bos indicus. Furthermore, Pingliang red cattle display a more prominent B. taurus pedigree in comparison with Jinnan, Qinchuan, Zaosheng, Nanyang, and Luxi cattle. Moreover, this study also revealed closer genetic proximity within the Chinese indigenous cattle breed, particularly Qinchuan cattle, which shares the longest identical by descent (IBD) fragment with Pingliang red cattle. Gene introgression analysis shows that Pingliang red cattle have undergone gene exchange with South Devon and Red Angus cattle from Europe. Admixture analysis revealed that the proportions of East Asian taurine and Chinese indicine in the ancestry of Pingliang red cattle are approximately 52.44% and 21.00%, respectively, while Eurasian taurine, European taurine, and Indian indicine account for approximately 17.55%, 7.27%, and 1.74%. Our findings unveil distinct genetic characteristics in Pingliang red cattle and attribute their origin to B. taurus and B. indicus ancestry, as well as contributions from Qinchuan cattle, South Devon, and Red Angus.


Assuntos
Variação Genética , Genoma , Animais , Bovinos/genética , Filogenia , Genoma/genética , Genômica , China
5.
Animals (Basel) ; 13(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37889831

RESUMO

Despite significant advances of the bovine epigenome investigation, new evidence for the epigenetic basis of fetal cartilage development remains lacking. In this study, the chondrocytes were isolated from long bone tissues of bovine fetuses at 90 days. The Assay for Transposase-Accessible Chromatin with high throughput sequencing (ATAC-seq) and transcriptome sequencing (RNA-seq) were used to characterize gene expression and chromatin accessibility profile in bovine chondrocytes. A total of 9686 open chromatin regions in bovine fetal chondrocytes were identified and 45% of the peaks were enriched in the promoter regions. Then, all peaks were annotated to the nearest gene for Gene Ontology (GO) and Kyoto Encylopaedia of Genes and Genomes (KEGG) analysis. Growth and development-related processes such as amide biosynthesis process (GO: 0043604) and translation regulation (GO: 006417) were enriched in the GO analysis. The KEGG analysis enriched endoplasmic reticulum protein processing signal pathway, TGF-ß signaling pathway and cell cycle pathway, which are closely related to protein synthesis and processing during cell proliferation. Active transcription factors (TFs) were enriched by ATAC-seq, and were fully verified with gene expression levels obtained by RNA-seq. Among the top50 TFs from footprint analysis, known or potential cartilage development-related transcription factors FOS, FOSL2 and NFY were found. Overall, our data provide a theoretical basis for further determining the regulatory mechanism of cartilage development in bovine.

6.
Environ Pollut ; 335: 122296, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37536476

RESUMO

Uranium is a contaminate in the underground water in many regions of the world, which poses health risks to the local populations through drinking water. Although the health hazards of natural uranium have been concerned for decades, the controversies about its detrimental effects continue at present since it is still unclear how uranium interacts with molecular regulatory networks to generate toxicity. Here, we integrate transcriptomic and metabolomic methods to unveil the molecular mechanism of lipid metabolism disorder induced by uranium. Following exposure to uranium in drinking water for twenty-eight days, aberrant lipid metabolism and lipogenesis were found in the liver, accompanied with aggravated lipid peroxidation and an increase in dead cells. Multi-omics analysis reveals that uranium can promote the biosynthesis of unsaturated fatty acids through dysregulating the metabolism of arachidonic acid (AA), linoleic acid, and glycerophospholipid. Most notably, the disordered metabolism of polyunsaturated fatty acids (PUFAs) like AA may contribute to lipid peroxidation induced by uranium, which in turn triggers ferroptosis in hepatocytes. Our findings highlight disorder of lipid metabolism as an essential toxicological mechanism of uranium in the liver, offering insight into the health risks of uranium in drinking water.


Assuntos
Água Potável , Urânio , Camundongos , Animais , Urânio/toxicidade , Urânio/metabolismo , Transcriptoma , Fígado/metabolismo , Ácidos Graxos Insaturados/metabolismo , Metabolômica
7.
Molecules ; 28(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37375344

RESUMO

Aqueous zinc ion batteries (AZIBs) are promising electrochemical energy storage devices due to their high theoretical specific capacity, low cost, and environmental friendliness. However, uncontrolled dendrite growth poses a serious threat to the reversibility of Zn plating/stripping, which impacts the stability of batteries. Therefore, controlling the disordered dendrite growth remains a considerable challenge in the development of AZIBs. Herein, a ZIF-8-derived ZnO/C/N composite (ZOCC) interface layer was constructed on the surface of the Zn anode. The homogeneous distribution of zincophilic ZnO and the N element in the ZOCC facilitates directional Zn deposition on the (002) crystal plane. Moreover, the conductive skeleton with a microporous structure accelerates Zn2+ transport kinetics, resulting in a reduction in polarization. As a result, the stability and electrochemical properties of AZIBs are improved. Specifically, the ZOCC@Zn symmetric cell sustains over 1150 h at 0.5 mA cm-2 with 0.25 mA h cm-2, while the ZOCC@Zn half-cell achieves an outstanding Coulombic efficiency of 99.79% over 2000 cycles. This work provides a simple and effective strategy for improving the lifespan of AZIBs.

8.
Metallomics ; 15(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36869799

RESUMO

Understanding of how mercury species cause cellular impairments at the molecular level is critical for explaining the detrimental effects of mercury exposure on the human body. Previous studies have reported that inorganic and organic mercury compounds can induce apoptosis and necrosis in a variety of cell types, but more recent advances reveal that mercuric mercury (Hg2+) and methylmercury (CH3Hg+) may result in ferroptosis, a distinct form of programmed cell death. However, it is still unclear which protein targets are responsible for ferroptosis induced by Hg2+ and CH3Hg+. In this study, human embryonic kidney 293T cells were used to investigate how Hg2+ and CH3Hg+ trigger ferroptosis, given their nephrotoxicity. Our results demonstrate that glutathione peroxidase 4 (GPx4) plays a key role in lipid peroxidation and ferroptosis in renal cells induced by Hg2+ and CH3Hg+. The expression of GPx4, the only lipid repair enzyme in mammal cells, was downregulated in response to Hg2+ and CH3Hg+ stress. More importantly, the activity of GPx4 could be markedly inhibited by CH3Hg+, owing to the direct binding of the selenol group (-SeH) in GPx4 to CH3Hg+. Selenite supplementation was demonstrated to enhance the expression and activity of GPx4 in renal cells, and consequently relieve the cytotoxicity of CH3Hg+, suggesting that GPx4 is a crucial modulator implicated in the Hg-Se antagonism. These findings highlight the importance of GPx4 in mercury-induced ferroptosis, and provide an alternative explanation for how Hg2+ and CH3Hg+ induce cell death.


Assuntos
Ferroptose , Mercúrio , Selênio , Animais , Humanos , Mercúrio/toxicidade , Mercúrio/metabolismo , Selênio/farmacologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Rim/metabolismo , Glutationa Peroxidase/metabolismo , Mamíferos/metabolismo
9.
J Hazard Mater ; 452: 131217, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36940529

RESUMO

Thorium is a byproduct of the rare earth mining industry and can be utilized as fuel for the next-generation nuclear power facilities, which may pose health risks to the population. Although published literature has shown that the toxicity of thorium possibly originates from its interactions with iron/heme-containing proteins, the underlying mechanisms are still largely unclear. Since the liver plays an irreplaceable role in iron and heme metabolism in the body, it is essential to investigate how thorium affects iron and heme homeostasis in hepatocytes. In this study, we first assessed the liver injury in mice exposed to tetravalent thorium (Th(IV)) in the form of thorium nitrite via the oral route. After a two-week oral exposure, thorium accumulation and iron overload were observed in the liver, which are both closely associated with lipid peroxidation and cell death. Transcriptomics analysis revealed that ferroptosis, which has not previously been documented in cells for actinides, is the main mechanism of programmed cell death induced by Th(IV). Further mechanistic studies suggested that Th(IV) could activate the ferroptotic pathway through disrupting iron homeostasis and generating lipid peroxides. More significantly, the disorder of heme metabolism, which is crucial for maintaining intracellular iron and redox homeostasis, was found to contribute to ferroptosis in hepatocytes exposed to Th(IV). Our findings may shed light on a key mechanism of hepatoxicity in response to Th(IV) stress and provide in-depth understanding of the health risk of thorium.


Assuntos
Ferroptose , Camundongos , Animais , Tório/metabolismo , Fígado/metabolismo , Ferro/metabolismo , Peroxidação de Lipídeos , Heme/metabolismo , Homeostase , Ingestão de Alimentos
10.
BMC Plant Biol ; 22(1): 451, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36127640

RESUMO

BACKGROUND: SQUAMOSA promoter binding protein-like (SPL) is a unique family of transcription factors in plants, which is engaged in regulating plant growth and development, physiological and biochemical processes. Fraxinus mandshurica is an excellent timber species with a wide range of uses in northeastern China and enjoys a high reputation in the international market. SPL family analysis has been reported in some plants while SPL family analysis of Fraxinus mandshurica has not been reported. RESULTS: We used phylogeny, conserved motifs, gene structure, secondary structure prediction, miR156 binding sites, promoter cis elements and GO annotation to systematically analyze the FmSPLs family. This was followed by expression analysis by subcellular localization, expression patterns at various tissue sites, abiotic stress and hormone induction. Because FmSPL2 is highly expressed in flowers it was selected to describe the SPL gene family of Fraxinus mandshurica by ectopic expression. Among them, 10 FmSPL genes that were highly expressed at different loci were selected for expression analysis under abiotic stress (NaCl and Cold) and hormone induction (IAA and ABA). These 10 FmSPL genes showed corresponding trends in response to both abiotic stress and hormone induction. We showed that overexpression of FmSPL2 in transgenic Nicotiana tabacum L. resulted in taller plants, shorter root length, increased root number, rounded leaves, and earlier flowering time. CONCLUSIONS: We identified 36 SPL genes, which were classified into seven subfamilies based on sequence analysis. FmSPL2 was selected for subsequent heterologous expression by analysis of expression patterns in various tissues and under abiotic stress and hormone induction, and significant phenotypic changes were observed in the transgenic Nicotiana tabacum L. These results provide insight into the evolutionary origin and biological significance of plant SPL. The aim of this study was to lay the foundation for the genetic improvement of Fraxinus mandshurica and the subsequent functional analysis of FmSPL2.


Assuntos
Fraxinus , Fraxinus/genética , Regulação da Expressão Gênica de Plantas , Hormônios , Cloreto de Sódio , Nicotiana/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética
11.
Anal Bioanal Chem ; 414(24): 7023-7033, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35790569

RESUMO

New analytical strategies for metal-binding protein facilitate researchers learning about how metals play a significant role in life. Laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) offers many advantages for the metal analysis of biological samples and shows a promising future in protein analysis, but recent advances in LA-ICP-MS-based strategies for identifying metal-binding proteins via endogenous metals remain less updated yet. To present the current status in this field, the main analytical strategies for metal-binding proteins with LA-ICP-MS are reviewed here, including in situ analysis of biospecimens and ex situ analysis with gel electrophoresis. A critical discussion of challenges and future perspectives is also given. Multifarious laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS)-based strategies have been developed and applied to investigate the metal-binding proteins in biospecimens in situ or through gel electrophoresis ex situ over the past decades, facilitating researchers disclosing how essential metals are implicated in life or what proteins toxic metals will target.


Assuntos
Proteínas de Transporte , Terapia a Laser , Quelantes , Espectrometria de Massas/métodos , Metais/análise , Proteínas/química
12.
Environ Int ; 145: 106107, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32932066

RESUMO

Uranium contamination is a global health concern. Regarding natural or anthropogenic uranium contamination, the major sources of concern are groundwater, mining, phosphate fertilizers, nuclear facilities, and military activities. Many epidemiological and laboratory studies have demonstrated that environmental and occupational uranium exposure can induce multifarious health problems. Uranium exposure may cause health risks because of its chemotoxicity and radiotoxicity in natural or anthropogenic scenarios: the former is generally thought to play a more significant role with regard to the natural uranium exposure, and the latter is more relevant to enriched uranium exposure. The understanding of the health risks and underlying toxicological mechanisms of uranium remains at a preliminary stage, and many controversial findings require further research. In order to present state-of-the-art status in this field, this review will primarily focus on the chemotoxicity of uranium, rather than its radiotoxicity, as well as the involved toxicological mechanisms. First, the natural or anthropogenic uranium contamination scenarios will be briefly summarized. Second, the health risks upon natural uranium exposure, for example, nephrotoxicity, bone toxicity, reproductive toxicity, hepatotoxicity, neurotoxicity, and pulmonary toxicity, will be discussed based on the reported epidemiological cases and laboratory studies. Third, the recent advances regarding the toxicological mechanisms of uranium-induced chemotoxicity will be highlighted, including oxidative stress, genetic damage, protein impairment, inflammation, and metabolic disorder. Finally, the gaps and challenges in the knowledge of uranium-induced chemotoxicity and underlying mechanisms will be discussed.


Assuntos
Água Subterrânea , Exposição Ocupacional , Urânio , Fertilizantes , Mineração , Urânio/análise , Urânio/toxicidade
13.
Front Plant Sci ; 11: 523748, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33414793

RESUMO

The genetic stability of exogenous genes in the progeny of transgenic trees is extremely important in forest breeding; however, it remains largely unclear. We selected transgenic birch (Betula platyphylla) and its hybrid F1 progeny to investigate the expression stability and silencing mechanism of exogenous genes. We found that the exogenous genes of transgenic birch could be transmitted to their offspring through sexual reproduction. The exogenous genes were segregated during genetic transmission. The hybrid progeny of transgenic birch WT1×TP22 (184) and WT1×TP23 (212) showed higher Bgt expression and greater insect resistance than their parents. However, the hybrid progeny of transgenic birch TP23×TP49 (196) showed much lower Bgt expression, which was only 13.5% of the expression in its parents. To elucidate the mechanism underlying the variation in gene expression between the parents and progeny, we analyzed the methylation rates of Bgt in its promoter and coding regions. The hybrid progeny with normally expressed exogenous genes showed much lower methylation rates (0-29%) than the hybrid progeny with silenced exogenous genes (32.35-45.95%). These results suggest that transgene silencing in the progeny is mainly due to DNA methylation at cytosine residues. We further demonstrated that methylation in the promoter region, rather than in the coding region, leads to gene silencing. We also investigated the relative expression levels of three methyltransferase genes: BpCMT, BpDRM, and BpMET. The transgenic birch line 196 with a silenced Gus gene showed, respectively, 2.54, 9.92, and 4.54 times higher expression levels of BpCMT, BpDRM, and BpMET than its parents. These trends are consistent with and corroborate the high methylation levels of exogenous genes in the transgenic birch line 196. Therefore, our study suggests that DNA methylation in the promoter region leads to silencing of exogenous genes in transgenic progeny of birch.

14.
Plant Sci ; 274: 294-308, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30080616

RESUMO

As a photoreceptor specifically for UV-B light, UVR8 gene plays an important role in the photomorphogenesis and developmental growth of plants. In this research, we isolated the UVR8 gene from birch, named BpUVR8 (AHY02156). BpUVR8 overexpression rescued the uvr8 mutant phenotype using functional complementation assay of BpUVR8 in Arabidopsis uvr8 mutants, which showed that the function of UVR8 is conserved between Arabidopsis and birch. The expression analysis of BpUVR8 indicated that this gene is expressed in various tissues, but its expression levels in leaves are higher than in other organs. Moreover, abiotic stress factors, such as UV-B, salinity, and abscisic acid (ABA) can induce the expression of BpUVR8 gene. Interestingly, the analysis of promoter activity indicated that BpUVR8 promoter not only has the promoting activity but can also respond to the induction of abiotic stress and ABA signal. So, we analyzed its function in ABA response via transgenic UVR8 overexpression in Arabidopsis. The BpUVR8 enhances the susceptibility to ABA, which indicates that BpUVR8 is regulated by ABA and can inhibit seed germination. The root length of 20-day-old 35S::BpUVR8/WT transgenic plants was 18% reduced as compared to the wild-type under the ABA treatment. The membrane of the BpUVR8-overexpressing in Arabidopsis thaliana was the most damaged after ABA treatment and 35S::BpUVR8/WT transgenic plant was more sensitive to ABA than the wild type. These results showed that BpUVR8 is a positive regulator in the ABA signal transduction pathway. In the presence of low dose of UV-B, the sensitivity of wild-type and 35S::BpUVR8/WT plants to ABA was reduced. Moreover, BpUVR8 regulates the expression of a subset of ABA-responsive genes, both in Arabidopsis and Betula platyphylla, under the ABA treatment. Our data provide evidence that BpUVR8 is a positive regulator in the UV-B-induced photomorphogenesis in plants. Moreover, we propose from this research that BpUVR8 might have an important role in integrating plant growth and ABA signaling pathway.


Assuntos
Ácido Abscísico/metabolismo , Betula/genética , Fotorreceptores de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Betula/crescimento & desenvolvimento , Betula/fisiologia , Betula/efeitos da radiação , Clonagem Molecular , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fotorreceptores de Plantas/genética , Plantas Geneticamente Modificadas , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...