Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 4(9): 1700079, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28932667

RESUMO

Antireflection (AR) at the interface between the air and incident window material is paramount to boost the performance of photovoltaic devices. 3D nanostructures have attracted tremendous interest to reduce reflection, while the structure is vulnerable to the harsh outdoor environment. Thus the AR film with improved mechanical property is desirable in an industrial application. Herein, a scalable production of flexible AR films is proposed with microsized structures by roll-to-roll imprinting process, which possesses hydrophobic property and much improved robustness. The AR films can be potentially used for a wide range of photovoltaic devices whether based on rigid or flexible substrates. As a demonstration, the AR films are integrated with commercial Si-based triple-junction thin film solar cells. The AR film works as an effective tool to control the light travel path and utilize the light inward more efficiently by exciting hybrid optical modes, which results in a broadband and omnidirectional enhanced performance.

2.
Nanotechnology ; 27(36): 365303, 2016 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-27482636

RESUMO

Thermal nanoimprinting technology was employed to fabricate 3D periodic nanocone ZnO films with different height/pitch values for photodetectors to optimize their light capturing property. The photocurrents of patterned film photodetectors increase with the height/pitch values. The patterned ZnO-Au hybrid film further boosts the ultraviolet (UV) response. Due to the co-contribution of the light trapping of 3D periodic structures and the driving force of the Schottky barrier in the Au/ZnO interface, the patterned ZnO-Au hybrid films with height/pitch of 40 nm/866 nm exhibit the best UV photoresponse (I on/I off = 779.927), which is 3.8 times higher than its film counterpart (I on/I off = 164.1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...