Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 456: 139915, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38852451

RESUMO

Vibrio parahaemolyticus is a food-borne pathogen that poses a serious threat to seafood safety and human health. An efficient, nontoxic, and sustainable disinfection material with a stable structure is urgently needed. Herein, silver (Ag)-hydroxyapatite (HAP) composite catalysts were prepared using HAP derived from waste fish bones. The Ag2.50%-HAP showed a 100% disinfection rate against V. parahaemolyticus, disinfecting nearly 7.0 lg CFU mL-1 within 15 min at a low concentration of 300 µg mL-1. This efficient disinfection activity could be attributed to the double-synergistic effect of Ag and superoxide radicals, which resulted in the destruction of bacterial cell structures and the leakage of intracellular proteins. Importantly, the composite also exhibited high activity in controlling the growth of pathogens during the storage process of Penaeus vannamei. These findings provided sustainable composite catalysts for disinfecting V. parahaemolyticus in seafood and a high-value utilization strategy for waste fish bones.

2.
Int J Biol Macromol ; 266(Pt 2): 131126, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38527682

RESUMO

The objective of this study was to explore the potential of Antarctic krill-derived peptides as α-glucosidase inhibitors for the treatment of type 2 diabetes. The enzymolysis conditions of α-glucosidase inhibitory peptides were optimized by response surface methodology (RSM), a statistical method that efficiently determines optimal conditions with a limited number of experiments. Gel chromatography and LC-MS/MS techniques were utilized to determine the molecular weight (Mw) distribution and sequences of the hydrolysates. The identification and analysis of the mechanism behind α-glucosidase inhibitory peptides were conducted through conventional and computer-assisted techniques. The binding affinities between peptides and α-glucosidase were further validated using BLI (biolayer interferometry) assay. The results revealed that hydrolysates generated by neutrase exhibited the highest α-glucosidase inhibition rate. Optimal conditions for hydrolysis were determined to be an enzyme concentration of 6 × 103 U/g, hydrolysis time of 5.4 h, and hydrolysis temperature of 45 °C. Four peptides (LPFQR, PSFD, PSFDF, VPFPR) with strong binding affinities to the active site of α-glucosidase, primarily through hydrogen bonding and hydrophobic interactions. This study highlights the prospective utility of Antarctic krill-derived peptides in curtailing α-glucosidase activity, offering a theoretical foundation for the development of novel α-glucosidase inhibitors and related functional foods to enhance diabetes management.


Assuntos
Euphausiacea , Inibidores de Glicosídeo Hidrolases , Peptídeos , alfa-Glucosidases , Euphausiacea/química , Animais , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/isolamento & purificação , alfa-Glucosidases/metabolismo , alfa-Glucosidases/química , Hidrólise , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia , Pós , Regiões Antárticas , Sequência de Aminoácidos , Peso Molecular
3.
Food Chem ; 439: 138108, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061297

RESUMO

The effective modulation of pancreatic lipase and cholesterol esterase activities proves critical in maintaining circulatory triglycerides and cholesterol levels within physiological boundaries. In this study, peptides derived from KPHs-AL, produced through the enzymatic hydrolysis of skipjack tuna dark muscle using alkaline protease, have a specific inhibitory effect on pancreatic lipase and cholesterol esterase. It is hypothesized that these peptides target and modulate the activities of enzymes by inducing conformational changes within their binding pockets, potentially impacting the catalytic functions of both pancreatic lipase and cholesterol esterase. Results revealed these peptides including AINDPFIDL, FLGM, GLLF and WGPL, were found to nestle into the binding site groove of pancreatic lipase and cholesterol esterase. Among these, GLLF stood out, demonstrating potent inhibition with IC50 values of 0.1891 mg/mL and 0.2534 mg/mL for pancreatic lipase and cholesterol esterase, respectively. The kinetics studies suggested that GLLF competed effectively with substrates for the enzyme active sites. Spectroscopic analyses, including ultraviolet-visible, fluorescence quenching, and circular dichroism, indicated that GLLF binding induced conformational changes within the enzymes, likely through hydrogen bond formation and hydrophobic interactions, thereby increasing structural flexibility. Molecular docking and molecular dynamics simulations supported these findings, showing GLLF's stable interaction with vital active site residues. These findings position GLLF as a potent inhibitor of key digestive enzymes, offering insights into its role in regulating lipid metabolism and highlighting its potential as functional ingredient.


Assuntos
Pâncreas , Esterol Esterase , Esterol Esterase/metabolismo , Simulação de Acoplamento Molecular , Lipase/metabolismo , Peptídeos
4.
Biosci Biotechnol Biochem ; 86(5): 635-645, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35134820

RESUMO

This study compared ice recrystallization behaviors of frozen dessert model systems containing type I antifreeze protein (AFP I), type III antifreeze protein (AFP III), and antifreeze glycoprotein (AFGP) at -10 °C. Specifically, effects of AF(G)P concentration and heat treatment (95 °C for 10 min) were examined. The concentration dependence of the ice recrystallization rate constant reasonably well fit a sigmoidal function: the fitting procedure was proposed, along with cooperative coefficient α, and a new index of AF(G)P ice recrystallization inhibition (IRI) activity (C50). After 95 °C heat treatment for 10 min, AFP III lost its ice crystal recrystallization inhibitory activity the most: AFP I was less affected; AFGP was almost entirely unaffected. These different thermal treatment effects might reflect a lower degree of protein aggregation because of hydrophobic interaction after heat treatment or might reflect the simplicity and flexibility of the higher order structures of AFP I and AFGP.


Assuntos
Temperatura Alta , Gelo , Proteínas Anticongelantes/química , Proteínas Anticongelantes/metabolismo , Proteínas Anticongelantes/farmacologia , Congelamento , alfa-Fetoproteínas
5.
J Food Biochem ; 44(8): e13265, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32567143

RESUMO

Pepsin soluble collagen (PSC) was extracted from blue shark (Prionace glauca) skin and was used for chitosan-collagen composite coating to investigate coating effects on fresh red porgy (Pagrus major) fillet quality during storage at 4°C. Total volatile basic nitrogen (TVB-N), thiobarbituric acid (TBA), pH, K value, drip loss, and sensory evaluation scores were measured as deterioration indexes. Results show that coating by 1% of chitosan solutions containing 0.0%-0.8% of PSC significantly improved most deterioration indexes. Coating by 1% of chitosan solution containing 0.8% of PSC yielded the best results for K value, drip loss, and sensory evaluation, although the other indexes show no clear PSC concentration dependence. These results indicate 1% of chitosan solution containing 0.8% of PSC as the best coating formulation examined in this study. PRACTICAL APPLICATIONS: Aquatic products have high contents of water and protein. Their qualities are likely to decline because of endogenous chemical and enzyme reactions, and also because of the role of spoilage and pathogenic microorganisms during storage. The edible collagen and chitosan coating suggested by this research is biodegradable, biocompatible, cost effective, and is able to meet the requirements for food quality and storage duration. Pepsin soluble collagen (PSC) is an aquatic product processing by-product that makes the maximum use of resources. As described herein, a composite formulation comprising collagen and chitosan improves preservation effects of different types of coatings. A more high-quality and effective edible coating formulation was obtained, thereby extending the red porgy fillet shelf life.


Assuntos
Quitosana , Tubarões , Animais , Colágeno , Conservação de Alimentos , Armazenamento de Alimentos , Alimentos Marinhos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...