Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuromodulation ; 27(2): 360-371, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37055336

RESUMO

BACKGROUND AND AIMS: Sacral nerve stimulation (SNS) showed anti-inflammatory properties in animal models of inflammatory bowel disease. We aimed to evaluate the effectiveness and safety of SNS in patients with ulcerative colitis (UC). MATERIALS AND METHODS: Twenty-six patients with mild and moderate disease were randomized into two groups: SNS (delivered at S3 and S4 sacral foramina) and sham-SNS (delivered 8-10 mm away from sacral foramina), with the therapy applied once daily for one hour, for two weeks. We evaluated the Mayo score and several exploratory biomarkers, including C-reactive protein in the plasma, pro-inflammatory cytokines and norepinephrine in the serum, assessment of autonomic activity, and diversity and abundance of fecal microbiota species. RESULTS: After two weeks, 73% of the subjects in the SNS group achieved clinical response, compared with 27% in the sham-SNS group. Levels of C-reactive protein, pro-inflammatory cytokines in the serum, and autonomic activity were significantly improved toward a healthy profile in the SNS group but not in the sham-SNS group. Absolute abundance of fecal microbiota species and one of the metabolic pathways were changed in the SNS group but not in the sham-SNS group. Significant correlations were observed between pro-inflammatory cytokines and norepinephrine in the serum on the one side and fecal microbiota phyla on the other side. CONCLUSIONS: Patients with mild and moderate UC were responsive to a two-week SNS therapy. After performing further studies to evaluate its efficacy and safety, temporary SNS delivered through acupuncture needles may become a useful screening tool for identifying SNS therapy responders before considering long-term implantation of the implantable pulse generator and SNS leads for performing long-term SNS therapy.


Assuntos
Colite Ulcerativa , Terapia por Estimulação Elétrica , Animais , Humanos , Colite Ulcerativa/terapia , Proteína C-Reativa , Citocinas , Norepinefrina , Resultado do Tratamento
2.
Toxics ; 11(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36851052

RESUMO

Bisphenol A (BPA) is one of the most widely produced chemicals in the world used in the production of epoxy resins and polycarbonate plastics. BPA is easily migrated from the outer packaging to the contents. Due to the lipophilic property, BPA is easily accumulated in organisms. Perinatal low-dose BPA exposure alters brain neural development in later generations. In this study, after BPA treatment, the spontaneous movement of zebrafish larvae from the cleavage period to the segmentation period (1-24 hpf) was significantly decreased, with speed decreasing by 18.97% and distance decreasing between 18.4 and 29.7% compared to controls. Transcriptomics analysis showed that 131 genes were significantly differentially expressed in the exposed group during the 1-24 hpf period, among which 39 genes were significantly upregulated and 92 genes were significantly downregulated. The GO enrichment analysis, gene function analysis and real-time quantitative PCR of differentially expressed genes showed that the mRNA level of guanine deaminase (cypin) decreased significantly in the 1-24 hpf period. Moreover, during the 1-24 hpf period, BPA exposure reduced guanine deaminase activity. Therefore, we confirmed that cypin is a key sensitive gene for BPA during this period. Finally, the cypin mRNA microinjection verified that the cypin level of zebrafish larvae was restored, leading to the restoration of the locomotor activity. Taken together, the current results show that the sensitive period of BPA to zebrafish embryos is from the cleavage period to the segmentation period (1-24 hpf), and cypin is a potential target for BPA-induced neurodevelopmental toxicity. This study provides a potential sensitive period and a potential target for the deep understanding of neurodevelopmental toxicity mechanisms caused by BPA.

3.
Ecotoxicol Environ Saf ; 233: 113334, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35203007

RESUMO

Bromoacetamide (BAcAm) is a nitrogenous disinfection by-product. We previously found that BAcAm induced developmental toxicity in zebrafish embryos, but the underlying mechanisms remain to be elucidated. Since thyroid hormones (THs) homeostasis is crucial to development, we hypothesized that disruption of THs homeostasis may play a role in the developmental toxicity of BAcAm. In this study, we found BAcAm exposure significantly increased mortality and malformation rate, decreased hatching rate and body length, inhibited the locomotor capacity in zebrafish embryos. BAcAm elevated TSH, T3 and T4 levels, down-regulated T3/T4 ratios, and up-regulated mRNA expression changes of THs related genes (trh, tsh, tg, nis, tpo, dio1, dio2, ugt1ab,klf9 and rho), but down-regulated mRNA expression changes of TH receptors (tr α and tr ß). Up-regulated tr α and tr ß mRNAs by rescue treatment confirmed that both tr α and tr ß were involved in the developmental toxicity of BAcAm. In conclusion, our study indicates disruption of THs homeostasis via the thyroid hormone receptors was responsible for the developmental toxicity of BAcAm.


Assuntos
Acetamidas/toxicidade , Receptores dos Hormônios Tireóideos , Glândula Tireoide/efeitos dos fármacos , Peixe-Zebra , Animais , Embrião não Mamífero/efeitos dos fármacos , Homeostase , Receptores dos Hormônios Tireóideos/genética , Receptores dos Hormônios Tireóideos/metabolismo , Glândula Tireoide/metabolismo , Hormônios Tireóideos/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...