Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5168, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886447

RESUMO

Antibiotic resistance genes (ARGs) and metal(loid) resistance genes (MRGs) coexist in organic fertilized agroecosystems based on their correlations in abundance, yet evidence for the genetic linkage of ARG-MRGs co-selected by organic fertilization remains elusive. Here, an analysis of 511 global agricultural soil metagenomes reveals that organic fertilization correlates with a threefold increase in the number of diverse types of ARG-MRG-carrying contigs (AMCCs) in the microbiome (63 types) compared to non-organic fertilized soils (22 types). Metatranscriptomic data indicates increased expression of AMCCs under higher arsenic stress, with co-regulation of the ARG-MRG pairs. Organic fertilization heightens the coexistence of ARG-MRG in genomic elements through impacting soil properties and ARG and MRG abundances. Accordingly, a comprehensive global map was constructed to delineate the distribution of coexistent ARG-MRGs with virulence factors and mobile genes in metagenome-assembled genomes from agricultural lands. The map unveils a heightened relative abundance and potential pathogenicity risks (range of 4-6) for the spread of coexistent ARG-MRGs in Central North America, Eastern Europe, Western Asia, and Northeast China compared to other regions, which acquire a risk range of 1-3. Our findings highlight that organic fertilization co-selects genetically linked ARGs and MRGs in the global soil microbiome, and underscore the need to mitigate the spread of these co-resistant genes to safeguard public health.


Assuntos
Fertilizantes , Microbiota , Microbiologia do Solo , Microbiota/genética , Microbiota/efeitos dos fármacos , Metagenoma/genética , Resistência Microbiana a Medicamentos/genética , Solo/química , Genes Bacterianos , Metais , Antibacterianos/farmacologia , Agricultura
2.
Ying Yong Sheng Tai Xue Bao ; 30(9): 3010-3018, 2019 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-31529876

RESUMO

Frequent mowing and nitrogen enrichment can lead to the degradation of grassland ecosystem. It remains largely unknown that how the soil microbial characteristics, important bio-indicators of soil quality, respond to mowing and nitrogen enrichment. In this study, using a field experiment established in the meadow steppe in Hulunber, Inner Mongolia, we explored the responses of soil properties, microbial biomass, soil respiration, and soil enzyme activities to mowing and nitrogen addition during growing seasons. Mowing significantly reduced microbial biomass carbon, nitrogen and phosphorus, and soil respiration (basal respiration and substrate induced respiration), which might be caused by the moisture- and carbon-limitation. Mowing significantly reduced activities of the enzymes involved in nitrogen acquisition (N-acetyl-ß-D-glucosaminidase) and phosphorus acquisition (acidic phosphomonoesterases), which supports the resource allocation theory. Soil pH was significantly reduced by N addition. However, microbial biomass showed no significant response to nitrogen input, implying that soil acidification induced by nitrogen inputs was not profound enough to affect microbial biomass. Nitrogen addition did not affect soil respiration and microbial enzymatic activities, inconsistent with results from most of previous studies conducted in typical steppe. Combination of mowing and nitrogen addition reduced the activity of acidic phosphomonoesterases, which might be due to the increased phosphorus availability under the combined treatment. Combination of mowing and nitrogen addition reduced microbial biomass phosphorus, but increased soil available phosphorus, corresponding to the lowered activity of acidic phosphomonoesterases under the combined treatment. Microbial biomass carbon, nitrogen and phosphorus, and soil respiration peaked in July, which was associated with the high temperature and precipitation in summer. Soil enzymatic activities were higher in the spring and summer than in the late growing season. In summary, our results indicated that mowing would result in the imbalance of soil nutrients and intensify the risk of grassland degradation. In contrary, nitrogen addition exerted no effects on microbial biomass and activity.


Assuntos
Ecossistema , Nitrogênio , Microbiologia do Solo , Solo , Biomassa , Carbono , China , Poaceae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...