Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acc Chem Res ; 56(12): 1565-1577, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37272995

RESUMO

ConspectusCatalytic intermolecular hydroamination of alkenes is an atom- and step-economical method for the synthesis of amines, which have important applications as pharmaceuticals, agrochemicals, catalysts, and materials. However, hydroaminations of alkenes in high yield with high selectivity are challenging to achieve because these reactions often lack a thermodynamic driving force and often are accompanied by side reactions, such as alkene isomerization, telomerization, and oxidative amination. Consequently, early examples of hydroamination were generally limited to the additions of N-H bonds to conjugated alkenes or strained alkenes, and the catalytic hydroamination of unactivated alkenes with late transition metals has only been disclosed recently. Many classes of catalysts, including early transition metals, late transition metals, rare-earth metals, acids, and photocatalysts, have been reported for catalytic hydroamination. Among them, late transition-metal complexes possess several advantages, including their relative ease of handling and their high compatibility of substrates containing polar or sensitive functional groups.This Account describes the progression in our laboratory of hydroaminations catalyzed by late transition-metal complexes from the initial additions of N-H bonds to activated alkenes to the more recent additions to unactivated alkenes. Our developments include the Markovnikov and anti-Markovnikov hydroamination of vinylarenes with palladium, rhodium, and ruthenium, the hydroamination of dienes and trienes with nickel and palladium, the hydroanimation of bicyclic strained alkenes with neutral iridium, and the hydroamination of unactivated terminal and internal alkenes with cationic iridium and ruthenium. Enantioselective hydroaminations of these classes of alkenes to form enantioenriched, chiral amines also have been developed.Mechanistic studies have elucidated the elementary steps and the turnover-limiting steps of these catalytic reactions. The hydroamination of conjugated alkenes catalyzed by palladium, rhodium, nickel, and ruthenium occurs by turnover-limiting nucleophilic attack of the amine on a coordinated benzyl, allyl, alkene, or arene ligand. On the other hand, the hydroamination of unconjugated alkenes catalyzed by ruthenium and iridium occurs by turnover-limiting migratory insertion of the alkene into a metal-nitrogen bond. In addition, pathways for the formation of side products, including isomeric alkenes and enamines, have been identified during our studies. During studies on enantioselective hydroamination, the reversibility of the hydroamination has been shown to erode the enantiopurity of the products. Based on our mechanistic understandings, new generations of catalysts that promote catalytic hydroaminations with higher rates, chemoselectivity, and enantioselectivity have been developed. We hope that our discoveries and mechanistic insights will facilitate the further development of catalysts that promote selective, practical, and efficient hydroamination of alkenes.

2.
J Am Chem Soc ; 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36780535

RESUMO

Remote hydrofunctionalizations of alkenes incorporate functional groups distal to existing carbon-carbon double bonds. While remote carbonylations are well-known, remote hydrofunctionalizations are most common for addition of relatively nonpolar B-H, Si-H, and C-H bonds with alkenes. We report a system for the remote hydroamination of disubstituted alkenes to functionalize an alkyl chain selectively at the subterminal, unactivated, methylene position. Critical to the high regioselectivity and reaction rates are the electronic properties of the substituent on the amine and the development of the ligand DIP-Ad-SEGPHOS by evaluating the steric and electronic effects of ligand modules on reactivity and selectivity. The remote hydroamination is compatible with a broad scope of alkenes and aminopyridines and enables the regioconvergent synthesis of amines from an isomeric mixture of alkenes. The products can be derivatized by nucleophilic aromatic substitution on the amino substituent with a variety of nucleophiles.

3.
Chem ; 8(2): 532-542, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35647390

RESUMO

Asymmetric alkene hydroamination could be a direct route to valuable chiral amines from abundant feedstocks. However, most asymmetric hydroaminations have limited synthetic value because they require a large excess of alkene, occur with modest enantioselectivity, and proceed with limited tolerance of functional groups. We report an enantioselective, intermolecular hydroamination of unactivated terminal alkenes that occurs with equimolar amounts of alkene and amine, tolerates many functional groups, and occurs in high yield, with high enantioselectivity and turnover numbers. Mechanistic studies revealed factors, including reversibility of the addition, reversible oxidation of the product amine, competing isomerization of the alkene reactant, and unfavorable replacement of sacrificial ligands in standard catalyst precursors by the chiral bisphosphine, that needed to be addressed to achieve enantioselective N-H additions to alkenes.

4.
J Am Chem Soc ; 143(1): 359-368, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33356181

RESUMO

Hydroamination of alkenes catalyzed by transition-metal complexes is an atom-economical method for the synthesis of amines, but reactions of unactivated alkenes remain inefficient. Additions of N-H bonds to such alkenes catalyzed by iridium, gold, and lanthanide catalysts are known, but they have required a large excess of the alkene. New mechanisms for such processes involving metals rarely used previously for hydroamination could enable these reactions to occur with greater efficiency. We report ruthenium-catalyzed intermolecular hydroaminations of a variety of unactivated terminal alkenes without the need for an excess of alkene and with 2-aminopyridine as an ammonia surrogate to give the Markovnikov addition product. Ruthenium complexes have rarely been used for hydroaminations and have not previously catalyzed such reactions with unactivated alkenes. Identification of the catalyst resting state, kinetic measurements, deuterium labeling studies, and DFT computations were conducted and, together, strongly suggest that this process occurs by a new mechanism for hydroamination occurring by oxidative amination in concert with reduction of the resulting imine.


Assuntos
Alcenos/química , Aminopiridinas/síntese química , Complexos de Coordenação/química , Aminação , Catálise , Teoria da Densidade Funcional , Modelos Químicos , Oxirredução , Rutênio/química
5.
Angew Chem Int Ed Engl ; 60(3): 1615-1619, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-32991759

RESUMO

A metal/ligand cooperative approach to the reduction of small molecules by metal silylene complexes (R2 Si=M) is demonstrated, whereby silicon activates the incoming substrate and mediates net two-electron transformations by one-electron redox processes at two metal centers. An appropriately tuned cationic pincer cobalt(I) complex, featuring a central silylene donor, reacts with CO2 to afford a bimetallic siloxane, featuring two CoII centers, with liberation of CO; reaction of the silylene complex with ethylene yields a similar bimetallic product with an ethylene bridge. Experimental and computational studies suggest a plausible mechanism proceeding by [2+2] cycloaddition to the silylene complex, which is quite sensitive to the steric environment. The CoII /CoII products are reactive to oxidation and reduction. Taken together, these findings demonstrate a strategy for metal/ligand cooperative small-molecule activation that is well-suited to 3d metals.

6.
Nature ; 588(7837): 254-260, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33142305

RESUMO

Hydroamination of alkenes, the addition of the N-H bond of an amine across an alkene, is a fundamental, yet challenging, organic transformation that creates an alkylamine from two abundant chemical feedstocks, alkenes and amines, with full atom economy1-3. The reaction is particularly important because amines, especially chiral amines, are prevalent substructures in a wide range of natural products and drugs. Although extensive efforts have been dedicated to developing catalysts for hydroamination, the vast majority of alkenes that undergo intermolecular hydroamination have been limited to conjugated, strained, or terminal alkenes2-4; only a few examples occur by the direct addition of the N-H bond of amines across unactivated internal alkenes5-7, including photocatalytic hydroamination8,9, and no asymmetric intermolecular additions to such alkenes are known. In fact, current examples of direct, enantioselective intermolecular hydroamination of any type of unactivated alkene lacking a directing group occur with only moderate enantioselectivity10-13. Here we report a cationic iridium system that catalyses intermolecular hydroamination of a range of unactivated, internal alkenes, including those in both acyclic and cyclic alkenes, to afford chiral amines with high enantioselectivity. The catalyst contains a phosphine ligand bearing trimethylsilyl-substituted aryl groups and a triflimide counteranion, and the reaction design includes 2-amino-6-methylpyridine as the amine to enhance the rates of multiple steps within the catalytic cycle while serving as an ammonia surrogate. These design principles point the way to the addition of N-H bonds of other reagents, as well as O-H and C-H bonds, across unactivated internal alkenes to streamline the synthesis of functional molecules from basic feedstocks.


Assuntos
Alcenos/química , Aminas/química , Técnicas de Química Sintética , Hidrogênio/química , Nitrogênio/química , Aminação , Aminopiridinas/química , Amônia/química , Catálise , Indicadores e Reagentes/química , Irídio/química , Ligantes , Fosfinas/química
7.
Dalton Trans ; 46(43): 14757-14761, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29052677

RESUMO

The synthesis and characterization of base-stabilized and base-free pincer-type bis(phosphine)/silylene [P2Si]Ru complexes are reported. The base-free complex readily reduces CO2 and CS2via silylene-assisted hydride transfer, affording structurally distinct products with silicon-to-ruthenium formate and dithioformate bridges.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...