Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 901: 166098, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37582449

RESUMO

It is important to examine the physical processes that regulate current CO2 concentrations in East Asia to understand the global carbon cycle. To do this, we begin by defining the difference between East Asian and global CO2 concentrations (East Asian CO2 concentration minus global CO2 concentration), which is referred to as East Asian local CO2 concentration (i.e., EA_LCO2). Then, we examine the physical processes associated with the variability of EA_LCO2 during boreal spring (March-April-May) on the slow and interannual timescales. Our results indicate that there are two key factors leading to elevated CO2 concentrations in East Asia relative to the global mean during boreal spring; one is higher emissions in East Asia, which mostly explains the increasing in EA_LCO2 on the slow timescales. The other is a cool sea surface temperature (SST) in the eastern tropical Pacific (La-Nina-like SST), which is associated with an interannual higher CO2 concentration in East Asia than the global mean. Enhanced convective activity in the western tropical Pacific, which is associated with a La-Nina-like SST forcing, induces low-pressure circulation in the western North Pacific with northerly winds, leading to suppressed precipitation and cool surface temperature in East Asia. Subsequently, those suppress vegetation growth as well as gross primary product, resulting in relatively high CO2 concentrations in East Asia compared to the global mean.

2.
Sci Total Environ ; 876: 162377, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36828073

RESUMO

The climatological seasonal maximum and minimum CO2 concentrations in East Asia for 1987-2020 have been recorded at April and August, respectively. We found that the CO2 concentration in East Asia during July, August, and September (JAS) is lower than normal before the late 1990s and after the early 2010s (Low_CO2 period), and higher than normal from the late 1990s to the early 2010s (High_CO2 period). The low-frequency variability of CO2 concentration in East Asia during JAS correlates with both Pacific Decadal Oscillation (PDO) and Atlantic Multi-decadal Oscillation (AMO)-related sea surface temperatures (SSTs). We analyzed atmospheric and oceanic conditions during JAS between the two periods, finding that precipitation in East Asia decreased during JAS in High_CO2 period than that in Low_CO2 period, possibly due to PDO and AMO-related SST forcing, which decreases vegetation's photosynthetic activity. This may lead to a higher CO2 concentration than normal in East Asia in High_CO2 period through reduced uptake of CO2 from the atmosphere. This implies that terrestrial vegetation activity influenced by remote SST forcings should be monitored to better understand regional carbon cycles in East Asia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...