Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 22(4): 1467-1474, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35133160

RESUMO

Fundamental understanding of ion migration inside perovskites is of vital importance for commercial advancements of photovoltaics. However, the mechanism for external ions incorporation and its effect on ion migration remains elusive. Herein, taking K+ and Cs+ co-incorporated mixed halide perovskites as a model, the impact of external ions on ion migration behavior has been interpreted via multiple dimensional characterization aspects. The space-effect on phase segregation inhibition has been revealed by the photoluminescence evolution and in situ dynamic cathodoluminescence behaviors. The plane-effect on current suppression along grain boundary has been evidenced via visualized surface current mapping, local current hysteresis, and time-resolved current decay. And the point-effect on activation energy incremental for individual ions has been also probed by cryogenic electronic quantification. All these results sufficiently demonstrate the passivated ion migration results in the eventually improved phase stability of perovskite, of which the origin lies in various ion migration energy barriers.

2.
Adv Mater ; 34(14): e2109998, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35112404

RESUMO

Rubidium cation (Rb+ ) addition is witnessed to play a pivotal role in boosting the comprehensive performance of organic-inorganic hybrid perovskite solar cells. However, the origin of such success derived from irreplaceable superiorities brought by Rb+ remains ambiguous. Herein, grain-boundary-including atomic models are adopted for the accurate theoretical analysis of practical Rb+ distribution in perovskite structures. The spatial distribution, covering both the grain interiors and boundaries, is thoroughly identified by virtue of synchrotron-based grazing-incidence X-ray diffraction. On this basis, the prominent elevation of the halogen vacancy formation energy, improved charge-carrier dynamics, and the electronic passivation mechanism in the grain interior are expounded. As evidenced by the increased energy barrier and suppressed microcurrent, the critical role of Rb+ addition in blocking the diffusion pathway along grain boundaries, inhibiting halide phase segregation, and eventually enhancing intrinsic stability is elucidated. Hence, the linkage avalanche effect of occupied location dominated by subtle changes in Rb+ concentration on electronic defects, ion migration, and phase stability is completely investigated in detail, shedding a new light on the advancement of high-efficiency cascade-incorporating strategies and perovskite compositional engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...