Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(35): 7323-7334, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37615503

RESUMO

As the demand for PET plastic products continues to grow, developing effective processes to reduce their pollution is of critical importance. Pyrolysis, a promising technology to produce lighter and recyclable components from wasted plastic products, has therefore received considerable attention. In this work, the rapid pyrolysis of PET was studied by using reactive molecular dynamics (MD) simulations. Mechanisms for yielding gas species were unraveled, which involve the generation of ethylene and TPA radicals from ester oxygen-alkyl carbon bond dissociation and condensation reactions to consume TPA radicals with the products of long chains containing a phenyl benzoate structure and CO2. As atomistic simulations are typically conducted at the time scale of a few nanoseconds, a high temperature (i.e., >1000 K) is adopted for accelerated reaction events. To apply the results from MD simulations to practical pyrolysis processes, a kinetic model based on a set of ordinary differential equations was established, which is capable of describing the key products of PET pyrolysis as a function of time and temperature. It was further exploited to determine the optimal reaction conditions for low environmental impact. Overall, this study conducted a detailed mechanism study of PET pyrolysis and established an effective kinetic model for the main species. The approach presented herein to extract kinetic information such as detailed kinetic constants and activation energies from atomistic MD simulations can also be applied to related systems such as the pyrolysis of other polymers.

2.
Adv Sci (Weinh) ; 9(11): e2104636, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35152570

RESUMO

Constructing strong oxide-support interaction (SOSI) is compelling for modulating the atomic configurations and electronic structures of supported catalysts. Herein, ultrafine iridium oxide nanoclusters (≈1 nm) are anchored on vanadium oxide support (IrO2 /V2 O5 ) via SOSI. The as made catalyst, with a unique distorted IrO2 structure, is discovered to significantly boost the performance for pH-universal oxygen evolution reaction (OER). Based on experimental results and theoretical calculations, the distorted IrO2 active sites with flexible redox states in IrO2 /V2 O5 server as electrophilic centers balance the adsorption of oxo-intermediates and effectively facilitate the process of OO coupling, eventually propelling the fast turnover of water oxidation. As a result, IrO2 /V2 O5 demonstrates not only ultralow overpotentials at 10 mA cm-2 (266 mV, pH = 0; 329 mV, pH = 7; 283 mV, pH = 14) for OER, but also high-performance overall water electrolysis over a broad pH range, with a potential of mere 1.50 V (pH = 0), 1.65 V (pH = 7) or 1.49 V (pH = 14) at 10 mA cm-2 . In addition, SOSI can simultaneously secure the distorted active sites and thus remarkably improving the catalytic stability, making it a promising strategy to develop high-performance catalytic systems.

3.
ACS Omega ; 4(7): 12498-12504, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31460369

RESUMO

Density functional theory was used to study dissociative chemisorption and desorption on Pd x Ni y (x + y = 6) bimetallic clusters. The H2 dissociative chemisorption energies and the H desorption energies at full H saturation were computed. It was found that bimetallic clusters tend to have higher chemisorption energy than pure clusters, and the capacity of Pd3Ni3 and Pd2Ni4 clusters to adsorb H atoms is substantially higher than that of other clusters. The H desorption energies of Pd3Ni3 and Pd2Ni4 are also lower than that of the Pd6 cluster and comparable to that of the Ni6 cluster, indicating that it is easier to pull the H atom out of these bimetallic catalysts. This suggests that the catalytic efficiency for specific Pd x Ni y bimetallic clusters may be superior to bare Ni or Pd clusters and that it may be possible to tune bimetallic nanoparticles to obtain better catalytic performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...