Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Res ; 1871(3): 119670, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38220095

RESUMO

Cancer cachexia is a type of energy-wasting syndrome characterized by fatigue, anorexia, muscle weakness, fat loss, and systemic inflammation. Baicalein, a flavonoid with bioactive properties, has demonstrated the ability to mitigate cardiac and skeletal muscle atrophy in different experimental settings. This effect is achieved through the inhibition of muscle proteolysis, suggesting its potential in preserving skeletal muscle homeostasis. In this study, we investigated the anti-cancer cachexia effects of baicalein in the regulation of muscle and fat wasting, both in vivo and in vitro. Baicalein attenuated body weight loss, including skeletal muscle and white adipose tissue (WAT), in CT26-induced cachectic mice. Moreover, baicalein increased muscle fiber thickness and suppressed the muscle-specific ubiquitin-protease system, including F-box only protein 32 and muscle RING-finger protein-1, by activating AKT phosphorylation both in vivo and in vitro. The use of LY294002, a particular inhibitor of AKT, eliminated the observed impact of baicalein on the improvement of muscle atrophy. In conclusion, baicalein inhibits muscle proteolysis and enhances AKT phosphorylation, indicating its potential role in cancer cachexia-associated muscle atrophy.


Assuntos
Caquexia , Neoplasias do Colo , Flavanonas , Animais , Camundongos , Caquexia/etiologia , Caquexia/prevenção & controle , Caquexia/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/prevenção & controle , Neoplasias do Colo/complicações
2.
Adv Mater ; 25(30): 4186-91, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23794459

RESUMO

A quick recovery: A semitransparent composite conductor comprising a layer of silver nanowire percolation network inlaid in the surface layer of a Diels-Alder-based healable polymer film is fabricated. The composite is flexible and highly conductive, and is capable of both structural and electrical healing via heating. Cut samples that completely lose their conductivity can recover 97% of it within 5 minutes of heating at 110 °C. The cutting and healing can be repeated at the same location for multiple cycles.


Assuntos
Nanotubos/química , Nanotubos/ultraestrutura , Polímeros/química , Prata/química , Condutividade Elétrica , Temperatura Alta , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Refratometria , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...